Optimal. Leaf size=26 \[ e^{2 e^{-\frac {5 x}{3 (x+5 \log (4))}} \left (4+\frac {2}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right ) \left (-12 x^2+\left (-220 x-200 x^2\right ) \log (4)-300 \log ^2(4)\right )}{3 x^4+30 x^3 \log (4)+75 x^2 \log ^2(4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right ) \left (-12 x^2+\left (-220 x-200 x^2\right ) \log (4)-300 \log ^2(4)\right )}{x^2 \left (3 x^2+30 x \log (4)+75 \log ^2(4)\right )} \, dx\\ &=\int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right ) \left (-12 x^2+\left (-220 x-200 x^2\right ) \log (4)-300 \log ^2(4)\right )}{3 x^2 (x+5 \log (4))^2} \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right ) \left (-12 x^2+\left (-220 x-200 x^2\right ) \log (4)-300 \log ^2(4)\right )}{x^2 (x+5 \log (4))^2} \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right ) \left (-220 x \log (4)-300 \log ^2(4)-4 x^2 (3+50 \log (4))\right )}{x^2 (x+5 \log (4))^2} \, dx\\ &=\frac {1}{3} \int \left (-\frac {12 \exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right )}{x^2}-\frac {4 \exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right )}{x \log (4)}+\frac {4 \exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right )}{\log (4) (x+5 \log (4))}-\frac {20 \exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right ) (-1+10 \log (4))}{(x+5 \log (4))^2}\right ) \, dx\\ &=-\left (4 \int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right )}{x^2} \, dx\right )+\frac {1}{3} (20 (1-10 \log (4))) \int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right )}{(x+5 \log (4))^2} \, dx-\frac {4 \int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right )}{x} \, dx}{3 \log (4)}+\frac {4 \int \frac {\exp \left (\frac {e^{-\frac {5 x}{3 x+15 \log (4)}} (4+8 x)}{x}-\frac {5 x}{3 x+15 \log (4)}\right )}{x+5 \log (4)} \, dx}{3 \log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.25, size = 32, normalized size = 1.23 \begin {gather*} e^{\frac {2^{2+\frac {50}{3 (x+5 \log (4))}} (1+2 x)}{e^{5/3} x}} \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 62, normalized size = 2.38 \begin {gather*} e^{\left (-\frac {5 \, x^{2} - 12 \, {\left (2 \, x^{2} + 10 \, {\left (2 \, x + 1\right )} \log \relax (2) + x\right )} e^{\left (-\frac {5 \, x}{3 \, {\left (x + 10 \, \log \relax (2)\right )}}\right )}}{3 \, {\left (x^{2} + 10 \, x \log \relax (2)\right )}} + \frac {5 \, x}{3 \, {\left (x + 10 \, \log \relax (2)\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, {\left (3 \, x^{2} + 10 \, {\left (10 \, x^{2} + 11 \, x\right )} \log \relax (2) + 300 \, \log \relax (2)^{2}\right )} e^{\left (\frac {4 \, {\left (2 \, x + 1\right )} e^{\left (-\frac {5 \, x}{3 \, {\left (x + 10 \, \log \relax (2)\right )}}\right )}}{x} - \frac {5 \, x}{3 \, {\left (x + 10 \, \log \relax (2)\right )}}\right )}}{3 \, {\left (x^{4} + 20 \, x^{3} \log \relax (2) + 100 \, x^{2} \log \relax (2)^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 24, normalized size = 0.92
method | result | size |
risch | \({\mathrm e}^{\frac {4 \left (2 x +1\right ) {\mathrm e}^{-\frac {5 x}{3 \left (10 \ln \relax (2)+x \right )}}}{x}}\) | \(24\) |
norman | \(\frac {\left (x^{2} {\mathrm e}^{\frac {5 x}{30 \ln \relax (2)+3 x}} {\mathrm e}^{\frac {\left (8 x +4\right ) {\mathrm e}^{-\frac {5 x}{30 \ln \relax (2)+3 x}}}{x}}+10 x \ln \relax (2) {\mathrm e}^{\frac {5 x}{30 \ln \relax (2)+3 x}} {\mathrm e}^{\frac {\left (8 x +4\right ) {\mathrm e}^{-\frac {5 x}{30 \ln \relax (2)+3 x}}}{x}}\right ) {\mathrm e}^{-\frac {5 x}{30 \ln \relax (2)+3 x}}}{x \left (10 \ln \relax (2)+x \right )}\) | \(119\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 39, normalized size = 1.50 \begin {gather*} e^{\left (\frac {4 \, e^{\left (\frac {50 \, \log \relax (2)}{3 \, {\left (x + 10 \, \log \relax (2)\right )}} - \frac {5}{3}\right )}}{x} + 8 \, e^{\left (\frac {50 \, \log \relax (2)}{3 \, {\left (x + 10 \, \log \relax (2)\right )}} - \frac {5}{3}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.45, size = 38, normalized size = 1.46 \begin {gather*} {\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{-\frac {5\,x}{3\,x+30\,\ln \relax (2)}}}{x}}\,{\mathrm {e}}^{8\,{\mathrm {e}}^{-\frac {5\,x}{3\,x+30\,\ln \relax (2)}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 20, normalized size = 0.77 \begin {gather*} e^{\frac {\left (8 x + 4\right ) e^{- \frac {5 x}{3 x + 30 \log {\relax (2 )}}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________