Optimal. Leaf size=21 \[ x+\frac {\log \left (e^{e^{3 e^{-x}}}+x\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x x \log (x)+e^x x^2 \log ^2(x)+e^{e^{3 e^{-x}}} \left (-3 e^{3 e^{-x}} x \log (x)+e^x x \log ^2(x)\right )+\left (-e^{e^{3 e^{-x}}+x}-e^x x\right ) \log \left (e^{e^{3 e^{-x}}}+x\right )}{e^{e^{3 e^{-x}}+x} x \log ^2(x)+e^x x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {1-3 e^{e^{3 e^{-x}}+3 e^{-x}-x}}{\left (e^{e^{3 e^{-x}}}+x\right ) \log (x)}-\frac {\log \left (e^{e^{3 e^{-x}}}+x\right )}{x \log ^2(x)}\right ) \, dx\\ &=x+\int \frac {1-3 e^{e^{3 e^{-x}}+3 e^{-x}-x}}{\left (e^{e^{3 e^{-x}}}+x\right ) \log (x)} \, dx-\int \frac {\log \left (e^{e^{3 e^{-x}}}+x\right )}{x \log ^2(x)} \, dx\\ &=x+\int \left (\frac {1}{\left (e^{e^{3 e^{-x}}}+x\right ) \log (x)}-\frac {3 e^{e^{3 e^{-x}}+3 e^{-x}-x}}{\left (e^{e^{3 e^{-x}}}+x\right ) \log (x)}\right ) \, dx-\int \frac {\log \left (e^{e^{3 e^{-x}}}+x\right )}{x \log ^2(x)} \, dx\\ &=x-3 \int \frac {e^{e^{3 e^{-x}}+3 e^{-x}-x}}{\left (e^{e^{3 e^{-x}}}+x\right ) \log (x)} \, dx+\int \frac {1}{\left (e^{e^{3 e^{-x}}}+x\right ) \log (x)} \, dx-\int \frac {\log \left (e^{e^{3 e^{-x}}}+x\right )}{x \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 21, normalized size = 1.00 \begin {gather*} x+\frac {\log \left (e^{e^{3 e^{-x}}}+x\right )}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 31, normalized size = 1.48 \begin {gather*} \frac {x \log \relax (x) + \log \left ({\left (x e^{x} + e^{\left (x + e^{\left (3 \, e^{\left (-x\right )}\right )}\right )}\right )} e^{\left (-x\right )}\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 31, normalized size = 1.48 \begin {gather*} \frac {x \log \relax (x) + \log \left ({\left (x e^{x} + e^{\left (x + e^{\left (3 \, e^{\left (-x\right )}\right )}\right )}\right )} e^{\left (-x\right )}\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.90
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{{\mathrm e}^{3 \,{\mathrm e}^{-x}}}+x \right )}{\ln \relax (x )}+x\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 21, normalized size = 1.00 \begin {gather*} \frac {x \log \relax (x) + \log \left (x + e^{\left (e^{\left (3 \, e^{\left (-x\right )}\right )}\right )}\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {\ln \left (x+{\mathrm {e}}^{{\mathrm {e}}^{3\,{\mathrm {e}}^{-x}}}\right )\,\left ({\mathrm {e}}^{x+{\mathrm {e}}^{3\,{\mathrm {e}}^{-x}}}+x\,{\mathrm {e}}^x\right )+{\mathrm {e}}^{{\mathrm {e}}^{3\,{\mathrm {e}}^{-x}}}\,\left (3\,x\,{\mathrm {e}}^{3\,{\mathrm {e}}^{-x}}\,\ln \relax (x)-x\,{\mathrm {e}}^x\,{\ln \relax (x)}^2\right )-x^2\,{\mathrm {e}}^x\,{\ln \relax (x)}^2-x\,{\mathrm {e}}^x\,\ln \relax (x)}{x^2\,{\mathrm {e}}^x\,{\ln \relax (x)}^2+x\,{\mathrm {e}}^{x+{\mathrm {e}}^{3\,{\mathrm {e}}^{-x}}}\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 12.75, size = 15, normalized size = 0.71 \begin {gather*} x + \frac {\log {\left (x + e^{e^{3 e^{- x}}} \right )}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________