Optimal. Leaf size=23 \[ \left (e^x-x \log \left (-\frac {1}{5}+x\right )\right )^{e^{-1-e^2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.62, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 101, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {6688, 12, 6686} \begin {gather*} \left (e^x-x \log \left (x-\frac {1}{5}\right )\right )^{e^{-1-e^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-1-e^2} \left (5 x-e^x (-1+5 x)-(1-5 x) \log \left (-\frac {1}{5}+x\right )\right ) \left (e^x-x \log \left (-\frac {1}{5}+x\right )\right )^{-1+e^{-1-e^2}}}{1-5 x} \, dx\\ &=e^{-1-e^2} \int \frac {\left (5 x-e^x (-1+5 x)-(1-5 x) \log \left (-\frac {1}{5}+x\right )\right ) \left (e^x-x \log \left (-\frac {1}{5}+x\right )\right )^{-1+e^{-1-e^2}}}{1-5 x} \, dx\\ &=\left (e^x-x \log \left (-\frac {1}{5}+x\right )\right )^{e^{-1-e^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 23, normalized size = 1.00 \begin {gather*} \left (e^x-x \log \left (-\frac {1}{5}+x\right )\right )^{e^{-1-e^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.90, size = 37, normalized size = 1.61 \begin {gather*} \left (-{\left (x e^{\left (e^{2} + 1\right )} \log \left (x - \frac {1}{5}\right ) - e^{\left (x + e^{2} + 1\right )}\right )} e^{\left (-e^{2} - 1\right )}\right )^{e^{\left (-e^{2} - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (5 \, x - 1\right )} e^{x} - {\left (5 \, x - 1\right )} \log \left (x - \frac {1}{5}\right ) - 5 \, x\right )} {\left (-x \log \left (x - \frac {1}{5}\right ) + e^{x}\right )}^{e^{\left (-e^{2} - 1\right )}}}{{\left (5 \, x^{2} - x\right )} e^{\left (e^{2} + 1\right )} \log \left (x - \frac {1}{5}\right ) - {\left (5 \, x - 1\right )} e^{\left (x + e^{2} + 1\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.11, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (5 x -1\right ) \ln \left (x -\frac {1}{5}\right )+\left (-5 x +1\right ) {\mathrm e}^{x}+5 x \right ) {\mathrm e}^{\ln \left (-x \ln \left (x -\frac {1}{5}\right )+{\mathrm e}^{x}\right ) {\mathrm e}^{-{\mathrm e}^{2}-1}}}{\left (5 x^{2}-x \right ) {\mathrm e}^{{\mathrm e}^{2}+1} \ln \left (x -\frac {1}{5}\right )+\left (-5 x +1\right ) {\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{2}+1}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 24, normalized size = 1.04 \begin {gather*} {\left (x {\left (\log \relax (5) - \log \left (5 \, x - 1\right )\right )} + e^{x}\right )}^{e^{\left (-e^{2} - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.93, size = 18, normalized size = 0.78 \begin {gather*} {\left ({\mathrm {e}}^x-x\,\ln \left (x-\frac {1}{5}\right )\right )}^{{\mathrm {e}}^{-{\mathrm {e}}^2-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 33.39, size = 19, normalized size = 0.83 \begin {gather*} \left (- x \log {\left (x - \frac {1}{5} \right )} + e^{x}\right )^{e^{- e^{2} - 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________