Optimal. Leaf size=24 \[ 3+e^{\frac {1}{5} e^{-1+\frac {3 x}{20}}+2 x}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 25, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 2, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{5} \left (10 x+e^{\frac {1}{20} (3 x-20)}\right )}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{100} \int \left (-100+e^{\frac {1}{5} \left (e^{\frac {1}{20} (-20+3 x)}+10 x\right )} \left (200+3 e^{\frac {1}{20} (-20+3 x)}\right )\right ) \, dx\\ &=-x+\frac {1}{100} \int e^{\frac {1}{5} \left (e^{\frac {1}{20} (-20+3 x)}+10 x\right )} \left (200+3 e^{\frac {1}{20} (-20+3 x)}\right ) \, dx\\ &=e^{\frac {1}{5} \left (e^{\frac {1}{20} (-20+3 x)}+10 x\right )}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.14, size = 102, normalized size = 4.25 \begin {gather*} -x-\frac {48828125000}{3} \sqrt [3]{5} e^{\frac {40}{3}-\frac {x}{10}} \left (-e^{3 x/20}\right )^{2/3} \Gamma \left (\frac {40}{3},-\frac {1}{5} e^{-1+\frac {3 x}{20}}\right )+1220703125 \sqrt [3]{5} e^{\frac {40}{3}-\frac {x}{10}} \left (-e^{3 x/20}\right )^{2/3} \Gamma \left (\frac {43}{3},-\frac {1}{5} e^{-1+\frac {3 x}{20}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 17, normalized size = 0.71 \begin {gather*} -x + e^{\left (2 \, x + \frac {1}{5} \, e^{\left (\frac {3}{20} \, x - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.54, size = 17, normalized size = 0.71 \begin {gather*} -x + e^{\left (2 \, x + \frac {1}{5} \, e^{\left (\frac {3}{20} \, x - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.75
method | result | size |
default | \(-x +{\mathrm e}^{\frac {{\mathrm e}^{\frac {3 x}{20}-1}}{5}+2 x}\) | \(18\) |
norman | \(-x +{\mathrm e}^{\frac {{\mathrm e}^{\frac {3 x}{20}-1}}{5}+2 x}\) | \(18\) |
risch | \(-x +{\mathrm e}^{\frac {{\mathrm e}^{\frac {3 x}{20}-1}}{5}+2 x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 17, normalized size = 0.71 \begin {gather*} -x + e^{\left (2 \, x + \frac {1}{5} \, e^{\left (\frac {3}{20} \, x - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.48, size = 17, normalized size = 0.71 \begin {gather*} {\mathrm {e}}^{2\,x+\frac {{\mathrm {e}}^{-1}\,{\left ({\mathrm {e}}^x\right )}^{3/20}}{5}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.62 \begin {gather*} - x + e^{2 x + \frac {e^{\frac {3 x}{20} - 1}}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________