Optimal. Leaf size=25 \[ \log \left ((5+x) \left (-\frac {x}{5}+\left (4-e^{2 x^3}+x\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {275+128 x+15 x^2+e^{4 x^3} \left (5+300 x^2+60 x^3\right )+e^{2 x^3} \left (-90-20 x-1200 x^2-540 x^3-60 x^4\right )}{400+275 x+64 x^2+5 x^3+e^{4 x^3} (25+5 x)+e^{2 x^3} \left (-200-90 x-10 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {275+128 x+15 x^2+e^{4 x^3} \left (5+300 x^2+60 x^3\right )+e^{2 x^3} \left (-90-20 x-1200 x^2-540 x^3-60 x^4\right )}{(5+x) \left (80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2\right )} \, dx\\ &=\int \left (\frac {1+60 x^2+12 x^3}{5+x}+\frac {39-10 e^{2 x^3}+10 x-960 x^2+240 e^{2 x^3} x^2-468 x^3+60 e^{2 x^3} x^3-60 x^4}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}\right ) \, dx\\ &=\int \frac {1+60 x^2+12 x^3}{5+x} \, dx+\int \frac {39-10 e^{2 x^3}+10 x-960 x^2+240 e^{2 x^3} x^2-468 x^3+60 e^{2 x^3} x^3-60 x^4}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx\\ &=\int \left (12 x^2+\frac {1}{5+x}\right ) \, dx+\int \left (\frac {39}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}-\frac {10 e^{2 x^3}}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}+\frac {10 x}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}-\frac {960 x^2}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}+\frac {240 e^{2 x^3} x^2}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}-\frac {468 x^3}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}+\frac {60 e^{2 x^3} x^3}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}-\frac {60 x^4}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2}\right ) \, dx\\ &=4 x^3+\log (5+x)-10 \int \frac {e^{2 x^3}}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx+10 \int \frac {x}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx+39 \int \frac {1}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx+60 \int \frac {e^{2 x^3} x^3}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx-60 \int \frac {x^4}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx+240 \int \frac {e^{2 x^3} x^2}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx-468 \int \frac {x^3}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx-960 \int \frac {x^2}{80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.87, size = 44, normalized size = 1.76 \begin {gather*} \log (5+x)+\log \left (80-40 e^{2 x^3}+5 e^{4 x^3}+39 x-10 e^{2 x^3} x+5 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 35, normalized size = 1.40 \begin {gather*} \log \left (5 \, x^{2} - 10 \, {\left (x + 4\right )} e^{\left (2 \, x^{3}\right )} + 39 \, x + 5 \, e^{\left (4 \, x^{3}\right )} + 80\right ) + \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 41, normalized size = 1.64 \begin {gather*} \log \left (5 \, x^{2} - 10 \, x e^{\left (2 \, x^{3}\right )} + 39 \, x + 5 \, e^{\left (4 \, x^{3}\right )} - 40 \, e^{\left (2 \, x^{3}\right )} + 80\right ) + \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 33, normalized size = 1.32
method | result | size |
risch | \(\ln \left (5+x \right )+\ln \left ({\mathrm e}^{4 x^{3}}+\left (-2 x -8\right ) {\mathrm e}^{2 x^{3}}+x^{2}+\frac {39 x}{5}+16\right )\) | \(33\) |
norman | \(\ln \left (5+x \right )+\ln \left (5 \,{\mathrm e}^{4 x^{3}}-10 \,{\mathrm e}^{2 x^{3}} x +5 x^{2}-40 \,{\mathrm e}^{2 x^{3}}+39 x +80\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 31, normalized size = 1.24 \begin {gather*} \log \left (x^{2} - 2 \, {\left (x + 4\right )} e^{\left (2 \, x^{3}\right )} + \frac {39}{5} \, x + e^{\left (4 \, x^{3}\right )} + 16\right ) + \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 37, normalized size = 1.48 \begin {gather*} \ln \left (x+5\right )+\ln \left (\frac {39\,x}{5}-8\,{\mathrm {e}}^{2\,x^3}+{\mathrm {e}}^{4\,x^3}-2\,x\,{\mathrm {e}}^{2\,x^3}+x^2+16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 36, normalized size = 1.44 \begin {gather*} \log {\left (x + 5 \right )} + \log {\left (x^{2} + \frac {39 x}{5} + \left (- 2 x - 8\right ) e^{2 x^{3}} + e^{4 x^{3}} + 16 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________