Optimal. Leaf size=22 \[ \frac {9}{20-e^{2 x}-4 \log (5+\log (5 x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.49, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 127, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6688, 12, 6686} \begin {gather*} \frac {9}{-e^{2 x}-4 \log (\log (5 x)+5)+20} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 \left (2+5 e^{2 x} x+e^{2 x} x \log (5 x)\right )}{x (5+\log (5 x)) \left (20-e^{2 x}-4 \log (5+\log (5 x))\right )^2} \, dx\\ &=18 \int \frac {2+5 e^{2 x} x+e^{2 x} x \log (5 x)}{x (5+\log (5 x)) \left (20-e^{2 x}-4 \log (5+\log (5 x))\right )^2} \, dx\\ &=\frac {9}{20-e^{2 x}-4 \log (5+\log (5 x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 0.91 \begin {gather*} -\frac {9}{-20+e^{2 x}+4 \log (5+\log (5 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 19, normalized size = 0.86 \begin {gather*} -\frac {9}{e^{\left (2 \, x\right )} + 4 \, \log \left (\log \left (5 \, x\right ) + 5\right ) - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 19, normalized size = 0.86 \begin {gather*} -\frac {9}{e^{\left (2 \, x\right )} + 4 \, \log \left (\log \relax (5) + \log \relax (x) + 5\right ) - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 20, normalized size = 0.91
method | result | size |
risch | \(-\frac {9}{-20+{\mathrm e}^{2 x}+4 \ln \left (\ln \left (5 x \right )+5\right )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 19, normalized size = 0.86 \begin {gather*} -\frac {9}{e^{\left (2 \, x\right )} + 4 \, \log \left (\log \relax (5) + \log \relax (x) + 5\right ) - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.80, size = 19, normalized size = 0.86 \begin {gather*} -\frac {9}{4\,\ln \left (\ln \left (5\,x\right )+5\right )+{\mathrm {e}}^{2\,x}-20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 19, normalized size = 0.86 \begin {gather*} - \frac {9}{e^{2 x} + 4 \log {\left (\log {\left (5 x \right )} + 5 \right )} - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________