Optimal. Leaf size=26 \[ -x+\frac {x^2 \left (2 x+x^2\right )^2}{3 (x+\log (5))} \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 96, normalized size of antiderivative = 3.69, number of steps used = 4, number of rules used = 3, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {27, 12, 1850} \begin {gather*} \frac {x^5}{3}+\frac {1}{3} x^4 (4-\log (5))+\frac {1}{3} x^3 (2-\log (5))^2-\frac {1}{3} x^2 (2-\log (5))^2 \log (5)+\frac {(2-\log (5))^2 \log ^4(5)}{3 (x+\log (5))}-\frac {1}{3} x \left (3-(2-\log (5))^2 \log ^2(5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 x^2+12 x^4+16 x^5+5 x^6+\left (-6 x+16 x^3+20 x^4+6 x^5\right ) \log (5)-3 \log ^2(5)}{3 (x+\log (5))^2} \, dx\\ &=\frac {1}{3} \int \frac {-3 x^2+12 x^4+16 x^5+5 x^6+\left (-6 x+16 x^3+20 x^4+6 x^5\right ) \log (5)-3 \log ^2(5)}{(x+\log (5))^2} \, dx\\ &=\frac {1}{3} \int \left (5 x^4-4 x^3 (-4+\log (5))+3 x^2 (-2+\log (5))^2-2 x (-2+\log (5))^2 \log (5)-\frac {(-2+\log (5))^2 \log ^4(5)}{(x+\log (5))^2}-3 \left (1-\frac {1}{3} (-2+\log (5))^2 \log ^2(5)\right )\right ) \, dx\\ &=\frac {x^5}{3}+\frac {1}{3} x^3 (2-\log (5))^2+\frac {1}{3} x^4 (4-\log (5))-\frac {1}{3} x^2 (2-\log (5))^2 \log (5)+\frac {(2-\log (5))^2 \log ^4(5)}{3 (x+\log (5))}-\frac {1}{3} x \left (3-(2-\log (5))^2 \log ^2(5)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 111, normalized size = 4.27 \begin {gather*} \frac {24 x^5+6 x^6+x^4 \left (24+15 \log ^2(5)-5 \log (5) \log (125)\right )+6 x^2 \left (-3+15 \log ^4(5)-5 \log ^3(5) \log (125)\right )+6 \log ^4(5) \left (4+25 \log ^2(5)-4 \log (5) (1+\log (15625))\right )+6 x \log (5) \left (-3+4 \log ^2(5)+25 \log ^4(5)-4 \log ^3(5) (1+\log (15625))\right )}{18 (x+\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.46, size = 60, normalized size = 2.31 \begin {gather*} \frac {x^{6} + {\left (x - 4\right )} \log \relax (5)^{5} + \log \relax (5)^{6} + 4 \, x^{5} - 4 \, {\left (x - 1\right )} \log \relax (5)^{4} + 4 \, x^{4} + 4 \, x \log \relax (5)^{3} - 3 \, x^{2} - 3 \, x \log \relax (5)}{3 \, {\left (x + \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 113, normalized size = 4.35 \begin {gather*} \frac {1}{3} \, x^{5} - \frac {1}{3} \, x^{4} \log \relax (5) + \frac {1}{3} \, x^{3} \log \relax (5)^{2} - \frac {1}{3} \, x^{2} \log \relax (5)^{3} + \frac {1}{3} \, x \log \relax (5)^{4} + \frac {4}{3} \, x^{4} - \frac {4}{3} \, x^{3} \log \relax (5) + \frac {4}{3} \, x^{2} \log \relax (5)^{2} - \frac {4}{3} \, x \log \relax (5)^{3} + \frac {4}{3} \, x^{3} - \frac {4}{3} \, x^{2} \log \relax (5) + \frac {4}{3} \, x \log \relax (5)^{2} - x + \frac {\log \relax (5)^{6} - 4 \, \log \relax (5)^{5} + 4 \, \log \relax (5)^{4}}{3 \, {\left (x + \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 33, normalized size = 1.27
method | result | size |
norman | \(\frac {-x^{2}+\frac {4 x^{4}}{3}+\frac {4 x^{5}}{3}+\frac {x^{6}}{3}+\ln \relax (5)^{2}}{\ln \relax (5)+x}\) | \(33\) |
gosper | \(\frac {x^{6}+4 x^{5}+4 x^{4}+3 \ln \relax (5)^{2}-3 x^{2}}{3 \ln \relax (5)+3 x}\) | \(34\) |
default | \(\frac {x \ln \relax (5)^{4}}{3}-\frac {x^{2} \ln \relax (5)^{3}}{3}+\frac {x^{3} \ln \relax (5)^{2}}{3}-\frac {x^{4} \ln \relax (5)}{3}+\frac {x^{5}}{3}-\frac {4 \ln \relax (5)^{3} x}{3}+\frac {4 x^{2} \ln \relax (5)^{2}}{3}-\frac {4 x^{3} \ln \relax (5)}{3}+\frac {4 x^{4}}{3}+\frac {4 x \ln \relax (5)^{2}}{3}-\frac {4 x^{2} \ln \relax (5)}{3}+\frac {4 x^{3}}{3}-x +\frac {\ln \relax (5)^{4} \left (\ln \relax (5)^{2}-4 \ln \relax (5)+4\right )}{3 \ln \relax (5)+3 x}\) | \(111\) |
risch | \(\frac {x \ln \relax (5)^{4}}{3}-\frac {x^{2} \ln \relax (5)^{3}}{3}+\frac {x^{3} \ln \relax (5)^{2}}{3}-\frac {x^{4} \ln \relax (5)}{3}+\frac {x^{5}}{3}-\frac {4 \ln \relax (5)^{3} x}{3}+\frac {4 x^{2} \ln \relax (5)^{2}}{3}-\frac {4 x^{3} \ln \relax (5)}{3}+\frac {4 x^{4}}{3}+\frac {4 x \ln \relax (5)^{2}}{3}-\frac {4 x^{2} \ln \relax (5)}{3}+\frac {4 x^{3}}{3}-x +\frac {\ln \relax (5)^{6}}{3 \ln \relax (5)+3 x}-\frac {4 \ln \relax (5)^{5}}{3 \left (\ln \relax (5)+x \right )}+\frac {4 \ln \relax (5)^{4}}{3 \left (\ln \relax (5)+x \right )}\) | \(125\) |
meijerg | \(-\frac {x}{1+\frac {x}{\ln \relax (5)}}+\ln \relax (5)^{4} \left (2 \ln \relax (5)+\frac {16}{3}\right ) \left (-\frac {x \left (-\frac {3 x^{4}}{\ln \relax (5)^{4}}+\frac {5 x^{3}}{\ln \relax (5)^{3}}-\frac {10 x^{2}}{\ln \relax (5)^{2}}+\frac {30 x}{\ln \relax (5)}+60\right )}{12 \ln \relax (5) \left (1+\frac {x}{\ln \relax (5)}\right )}+5 \ln \left (1+\frac {x}{\ln \relax (5)}\right )\right )+\ln \relax (5)^{3} \left (\frac {20 \ln \relax (5)}{3}+4\right ) \left (\frac {x \left (\frac {5 x^{3}}{\ln \relax (5)^{3}}-\frac {10 x^{2}}{\ln \relax (5)^{2}}+\frac {30 x}{\ln \relax (5)}+60\right )}{15 \ln \relax (5) \left (1+\frac {x}{\ln \relax (5)}\right )}-4 \ln \left (1+\frac {x}{\ln \relax (5)}\right )\right )+\frac {16 \ln \relax (5)^{3} \left (-\frac {x \left (-\frac {2 x^{2}}{\ln \relax (5)^{2}}+\frac {6 x}{\ln \relax (5)}+12\right )}{4 \ln \relax (5) \left (1+\frac {x}{\ln \relax (5)}\right )}+3 \ln \left (1+\frac {x}{\ln \relax (5)}\right )\right )}{3}-2 \ln \relax (5) \left (-\frac {x}{\ln \relax (5) \left (1+\frac {x}{\ln \relax (5)}\right )}+\ln \left (1+\frac {x}{\ln \relax (5)}\right )\right )+\frac {5 \ln \relax (5)^{5} \left (\frac {x \left (\frac {14 x^{5}}{\ln \relax (5)^{5}}-\frac {21 x^{4}}{\ln \relax (5)^{4}}+\frac {35 x^{3}}{\ln \relax (5)^{3}}-\frac {70 x^{2}}{\ln \relax (5)^{2}}+\frac {210 x}{\ln \relax (5)}+420\right )}{70 \ln \relax (5) \left (1+\frac {x}{\ln \relax (5)}\right )}-6 \ln \left (1+\frac {x}{\ln \relax (5)}\right )\right )}{3}-\ln \relax (5) \left (\frac {x \left (\frac {3 x}{\ln \relax (5)}+6\right )}{3 \ln \relax (5) \left (1+\frac {x}{\ln \relax (5)}\right )}-2 \ln \left (1+\frac {x}{\ln \relax (5)}\right )\right )\) | \(364\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 96, normalized size = 3.69 \begin {gather*} \frac {1}{3} \, x^{5} - \frac {1}{3} \, x^{4} {\left (\log \relax (5) - 4\right )} + \frac {1}{3} \, {\left (\log \relax (5)^{2} - 4 \, \log \relax (5) + 4\right )} x^{3} - \frac {1}{3} \, {\left (\log \relax (5)^{3} - 4 \, \log \relax (5)^{2} + 4 \, \log \relax (5)\right )} x^{2} + \frac {1}{3} \, {\left (\log \relax (5)^{4} - 4 \, \log \relax (5)^{3} + 4 \, \log \relax (5)^{2} - 3\right )} x + \frac {\log \relax (5)^{6} - 4 \, \log \relax (5)^{5} + 4 \, \log \relax (5)^{4}}{3 \, {\left (x + \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 196, normalized size = 7.54 \begin {gather*} \frac {4\,{\ln \relax (5)}^4-4\,{\ln \relax (5)}^5+{\ln \relax (5)}^6}{3\,x+3\,\ln \relax (5)}-x\,\left (2\,\ln \relax (5)\,\left (\frac {16\,\ln \relax (5)}{3}-2\,\ln \relax (5)\,\left (\frac {20\,\ln \relax (5)}{3}-\frac {5\,{\ln \relax (5)}^2}{3}+2\,\ln \relax (5)\,\left (\frac {4\,\ln \relax (5)}{3}-\frac {16}{3}\right )+4\right )+{\ln \relax (5)}^2\,\left (\frac {4\,\ln \relax (5)}{3}-\frac {16}{3}\right )\right )+{\ln \relax (5)}^2\,\left (\frac {20\,\ln \relax (5)}{3}-\frac {5\,{\ln \relax (5)}^2}{3}+2\,\ln \relax (5)\,\left (\frac {4\,\ln \relax (5)}{3}-\frac {16}{3}\right )+4\right )+1\right )-x^4\,\left (\frac {\ln \relax (5)}{3}-\frac {4}{3}\right )+x^3\,\left (\frac {20\,\ln \relax (5)}{9}-\frac {5\,{\ln \relax (5)}^2}{9}+\frac {2\,\ln \relax (5)\,\left (\frac {4\,\ln \relax (5)}{3}-\frac {16}{3}\right )}{3}+\frac {4}{3}\right )+x^2\,\left (\frac {8\,\ln \relax (5)}{3}-\ln \relax (5)\,\left (\frac {20\,\ln \relax (5)}{3}-\frac {5\,{\ln \relax (5)}^2}{3}+2\,\ln \relax (5)\,\left (\frac {4\,\ln \relax (5)}{3}-\frac {16}{3}\right )+4\right )+\frac {{\ln \relax (5)}^2\,\left (\frac {4\,\ln \relax (5)}{3}-\frac {16}{3}\right )}{2}\right )+\frac {x^5}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.34, size = 116, normalized size = 4.46 \begin {gather*} \frac {x^{5}}{3} + x^{4} \left (\frac {4}{3} - \frac {\log {\relax (5 )}}{3}\right ) + x^{3} \left (- \frac {4 \log {\relax (5 )}}{3} + \frac {\log {\relax (5 )}^{2}}{3} + \frac {4}{3}\right ) + x^{2} \left (- \frac {4 \log {\relax (5 )}}{3} - \frac {\log {\relax (5 )}^{3}}{3} + \frac {4 \log {\relax (5 )}^{2}}{3}\right ) + x \left (- \frac {4 \log {\relax (5 )}^{3}}{3} - 1 + \frac {\log {\relax (5 )}^{4}}{3} + \frac {4 \log {\relax (5 )}^{2}}{3}\right ) + \frac {- 4 \log {\relax (5 )}^{5} + \log {\relax (5 )}^{6} + 4 \log {\relax (5 )}^{4}}{3 x + 3 \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________