Optimal. Leaf size=31 \[ \left (-2+x^2\right ) \log \left (x-5 \left (3-\frac {4}{x}+x\right )^2+\frac {x}{\log \left (\frac {x}{3}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 15.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^3+x^5+\left (2 x^3-x^5\right ) \log \left (\frac {x}{3}\right )+\left (320-240 x-160 x^2+62 x^3-20 x^4+29 x^5+10 x^6\right ) \log ^2\left (\frac {x}{3}\right )+\left (-2 x^5 \log \left (\frac {x}{3}\right )+\left (160 x^2-240 x^3+10 x^4+58 x^5+10 x^6\right ) \log ^2\left (\frac {x}{3}\right )\right ) \log \left (\frac {x^3+\left (-80+120 x-5 x^2-29 x^3-5 x^4\right ) \log \left (\frac {x}{3}\right )}{x^2 \log \left (\frac {x}{3}\right )}\right )}{-x^4 \log \left (\frac {x}{3}\right )+\left (80 x-120 x^2+5 x^3+29 x^4+5 x^5\right ) \log ^2\left (\frac {x}{3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {\left (-2+x^2\right ) \left (x^3-x^3 \log \left (\frac {x}{3}\right )-160 \log ^2\left (\frac {x}{3}\right )+120 x \log ^2\left (\frac {x}{3}\right )+29 x^3 \log ^2\left (\frac {x}{3}\right )+10 x^4 \log ^2\left (\frac {x}{3}\right )\right )}{x \log \left (\frac {x}{3}\right ) \left (-x^3+80 \log \left (\frac {x}{3}\right )-120 x \log \left (\frac {x}{3}\right )+5 x^2 \log \left (\frac {x}{3}\right )+29 x^3 \log \left (\frac {x}{3}\right )+5 x^4 \log \left (\frac {x}{3}\right )\right )}+2 x \log \left (-5-\frac {80}{x^2}+\frac {120}{x}-29 x-5 x^2+\frac {x}{\log \left (\frac {x}{3}\right )}\right )\right ) \, dx\\ &=2 \int x \log \left (-5-\frac {80}{x^2}+\frac {120}{x}-29 x-5 x^2+\frac {x}{\log \left (\frac {x}{3}\right )}\right ) \, dx+\int \frac {\left (-2+x^2\right ) \left (x^3-x^3 \log \left (\frac {x}{3}\right )-160 \log ^2\left (\frac {x}{3}\right )+120 x \log ^2\left (\frac {x}{3}\right )+29 x^3 \log ^2\left (\frac {x}{3}\right )+10 x^4 \log ^2\left (\frac {x}{3}\right )\right )}{x \log \left (\frac {x}{3}\right ) \left (-x^3+80 \log \left (\frac {x}{3}\right )-120 x \log \left (\frac {x}{3}\right )+5 x^2 \log \left (\frac {x}{3}\right )+29 x^3 \log \left (\frac {x}{3}\right )+5 x^4 \log \left (\frac {x}{3}\right )\right )} \, dx\\ &=2 \int x \log \left (-5-\frac {80}{x^2}+\frac {120}{x}-29 x-5 x^2+\frac {x}{\log \left (\frac {x}{3}\right )}\right ) \, dx+\int \frac {\left (2-x^2\right ) \left (x^3-x^3 \log \left (\frac {x}{3}\right )+\left (-160+120 x+29 x^3+10 x^4\right ) \log ^2\left (\frac {x}{3}\right )\right )}{x \log \left (\frac {x}{3}\right ) \left (x^3-\left (80-120 x+5 x^2+29 x^3+5 x^4\right ) \log \left (\frac {x}{3}\right )\right )} \, dx\\ &=2 \int x \log \left (-5-\frac {80}{x^2}+\frac {120}{x}-29 x-5 x^2+\frac {x}{\log \left (\frac {x}{3}\right )}\right ) \, dx+\int \left (\frac {\left (-2+x^2\right ) \left (-160+120 x+29 x^3+10 x^4\right )}{x \left (80-120 x+5 x^2+29 x^3+5 x^4\right )}+\frac {2-x^2}{x \log \left (\frac {x}{3}\right )}+\frac {\left (-2+x^2\right ) \left (80-120 x+5 x^2+29 x^3+5 x^4\right )}{x \left (-x^3+80 \log \left (\frac {x}{3}\right )-120 x \log \left (\frac {x}{3}\right )+5 x^2 \log \left (\frac {x}{3}\right )+29 x^3 \log \left (\frac {x}{3}\right )+5 x^4 \log \left (\frac {x}{3}\right )\right )}+\frac {5 x^2 \left (96-96 x-46 x^2+48 x^3-3 x^4+x^6\right )}{\left (80-120 x+5 x^2+29 x^3+5 x^4\right ) \left (-x^3+80 \log \left (\frac {x}{3}\right )-120 x \log \left (\frac {x}{3}\right )+5 x^2 \log \left (\frac {x}{3}\right )+29 x^3 \log \left (\frac {x}{3}\right )+5 x^4 \log \left (\frac {x}{3}\right )\right )}\right ) \, dx\\ &=2 \int x \log \left (-5-\frac {80}{x^2}+\frac {120}{x}-29 x-5 x^2+\frac {x}{\log \left (\frac {x}{3}\right )}\right ) \, dx+5 \int \frac {x^2 \left (96-96 x-46 x^2+48 x^3-3 x^4+x^6\right )}{\left (80-120 x+5 x^2+29 x^3+5 x^4\right ) \left (-x^3+80 \log \left (\frac {x}{3}\right )-120 x \log \left (\frac {x}{3}\right )+5 x^2 \log \left (\frac {x}{3}\right )+29 x^3 \log \left (\frac {x}{3}\right )+5 x^4 \log \left (\frac {x}{3}\right )\right )} \, dx+\int \frac {\left (-2+x^2\right ) \left (-160+120 x+29 x^3+10 x^4\right )}{x \left (80-120 x+5 x^2+29 x^3+5 x^4\right )} \, dx+\int \frac {2-x^2}{x \log \left (\frac {x}{3}\right )} \, dx+\int \frac {\left (-2+x^2\right ) \left (80-120 x+5 x^2+29 x^3+5 x^4\right )}{x \left (-x^3+80 \log \left (\frac {x}{3}\right )-120 x \log \left (\frac {x}{3}\right )+5 x^2 \log \left (\frac {x}{3}\right )+29 x^3 \log \left (\frac {x}{3}\right )+5 x^4 \log \left (\frac {x}{3}\right )\right )} \, dx\\ &=2 \int x \log \left (-5-\frac {80}{x^2}+\frac {120}{x}-29 x-5 x^2+\frac {x}{\log \left (\frac {x}{3}\right )}\right ) \, dx+5 \int \frac {x^2 \left (-96+96 x+46 x^2-48 x^3+3 x^4-x^6\right )}{\left (80-120 x+5 x^2+29 x^3+5 x^4\right ) \left (x^3-\left (80-120 x+5 x^2+29 x^3+5 x^4\right ) \log \left (\frac {x}{3}\right )\right )} \, dx+\int \left (-\frac {29}{5}+\frac {4}{x}+2 x+\frac {3520-5180 x+1075 x^2+591 x^3}{5 \left (80-120 x+5 x^2+29 x^3+5 x^4\right )}\right ) \, dx+\int \left (\frac {2}{x \log \left (\frac {x}{3}\right )}-\frac {x}{\log \left (\frac {x}{3}\right )}\right ) \, dx+\int \frac {\left (2-x^2\right ) \left (80-120 x+5 x^2+29 x^3+5 x^4\right )}{x^4-x \left (80-120 x+5 x^2+29 x^3+5 x^4\right ) \log \left (\frac {x}{3}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.17, size = 112, normalized size = 3.61 \begin {gather*} 4 \log \left (\frac {x}{3}\right )+x^2 \log \left (-5-\frac {80}{x^2}+\frac {120}{x}-29 x-5 x^2+\frac {x}{\log \left (\frac {x}{3}\right )}\right )+2 \log \left (\log \left (\frac {x}{3}\right )\right )-2 \log \left (-x^3+80 \log \left (\frac {x}{3}\right )-120 x \log \left (\frac {x}{3}\right )+5 x^2 \log \left (\frac {x}{3}\right )+29 x^3 \log \left (\frac {x}{3}\right )+5 x^4 \log \left (\frac {x}{3}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 47, normalized size = 1.52 \begin {gather*} {\left (x^{2} - 2\right )} \log \left (\frac {x^{3} - {\left (5 \, x^{4} + 29 \, x^{3} + 5 \, x^{2} - 120 \, x + 80\right )} \log \left (\frac {1}{3} \, x\right )}{x^{2} \log \left (\frac {1}{3} \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.38, size = 148, normalized size = 4.77 \begin {gather*} x^{2} \log \left (-5 \, x^{4} \log \left (\frac {1}{3} \, x\right ) - 29 \, x^{3} \log \left (\frac {1}{3} \, x\right ) + x^{3} - 5 \, x^{2} \log \left (\frac {1}{3} \, x\right ) + 120 \, x \log \left (\frac {1}{3} \, x\right ) - 80 \, \log \left (\frac {1}{3} \, x\right )\right ) - 2 \, x^{2} \log \relax (x) - x^{2} \log \left (\log \left (\frac {1}{3} \, x\right )\right ) - 2 \, \log \left (5 \, x^{4} \log \relax (3) - 5 \, x^{4} \log \relax (x) + 29 \, x^{3} \log \relax (3) - 29 \, x^{3} \log \relax (x) + x^{3} + 5 \, x^{2} \log \relax (3) - 5 \, x^{2} \log \relax (x) - 120 \, x \log \relax (3) + 120 \, x \log \relax (x) + 80 \, \log \relax (3) - 80 \, \log \relax (x)\right ) + 4 \, \log \relax (x) + 2 \, \log \left (\log \relax (3) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.18, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (10 x^{6}+58 x^{5}+10 x^{4}-240 x^{3}+160 x^{2}\right ) \ln \left (\frac {x}{3}\right )^{2}-2 x^{5} \ln \left (\frac {x}{3}\right )\right ) \ln \left (\frac {\left (-5 x^{4}-29 x^{3}-5 x^{2}+120 x -80\right ) \ln \left (\frac {x}{3}\right )+x^{3}}{x^{2} \ln \left (\frac {x}{3}\right )}\right )+\left (10 x^{6}+29 x^{5}-20 x^{4}+62 x^{3}-160 x^{2}-240 x +320\right ) \ln \left (\frac {x}{3}\right )^{2}+\left (-x^{5}+2 x^{3}\right ) \ln \left (\frac {x}{3}\right )+x^{5}-2 x^{3}}{\left (5 x^{5}+29 x^{4}+5 x^{3}-120 x^{2}+80 x \right ) \ln \left (\frac {x}{3}\right )^{2}-x^{4} \ln \left (\frac {x}{3}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 198, normalized size = 6.39 \begin {gather*} x^{2} \log \left (5 \, x^{4} \log \relax (3) + x^{3} {\left (29 \, \log \relax (3) + 1\right )} + 5 \, x^{2} \log \relax (3) - 120 \, x \log \relax (3) - {\left (5 \, x^{4} + 29 \, x^{3} + 5 \, x^{2} - 120 \, x + 80\right )} \log \relax (x) + 80 \, \log \relax (3)\right ) - 2 \, x^{2} \log \relax (x) - {\left (x^{2} - 2\right )} \log \left (-\log \relax (3) + \log \relax (x)\right ) - 2 \, \log \left (5 \, x^{4} + 29 \, x^{3} + 5 \, x^{2} - 120 \, x + 80\right ) + 4 \, \log \relax (x) - 2 \, \log \left (-\frac {5 \, x^{4} \log \relax (3) + x^{3} {\left (29 \, \log \relax (3) + 1\right )} + 5 \, x^{2} \log \relax (3) - 120 \, x \log \relax (3) - {\left (5 \, x^{4} + 29 \, x^{3} + 5 \, x^{2} - 120 \, x + 80\right )} \log \relax (x) + 80 \, \log \relax (3)}{5 \, x^{4} + 29 \, x^{3} + 5 \, x^{2} - 120 \, x + 80}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.72, size = 357, normalized size = 11.52 \begin {gather*} 2\,\ln \left (x^4+\frac {29\,x^3}{5}+x^2-24\,x+16\right )+2\,\ln \left (\frac {25600\,\ln \left (\frac {x}{3}\right )-76800\,x\,\ln \left (\frac {x}{3}\right )+100\,x^8\,\ln \relax (x)+60800\,x^2\,\ln \left (\frac {x}{3}\right )+12800\,x^3\,\ln \left (\frac {x}{3}\right )-23580\,x^4\,\ln \left (\frac {x}{3}\right )-3660\,x^5\,\ln \left (\frac {x}{3}\right )+3564\,x^6\,\ln \left (\frac {x}{3}\right )+1180\,x^7\,\ln \left (\frac {x}{3}\right )-100\,x^8\,\ln \relax (3)}{x\,{\left (5\,x^4+29\,x^3+5\,x^2-120\,x+80\right )}^2}\right )-2\,\ln \left (\frac {320\,\ln \relax (3)-320\,\ln \relax (x)-20\,x^2\,\ln \relax (x)-116\,x^3\,\ln \relax (x)-20\,x^4\,\ln \relax (x)-480\,x\,\ln \relax (3)+20\,x^2\,\ln \relax (3)+116\,x^3\,\ln \relax (3)+20\,x^4\,\ln \relax (3)+480\,x\,\ln \relax (x)+4\,x^3}{x\,\left (5\,x^4+29\,x^3+5\,x^2-120\,x+80\right )}\right )-2\,\ln \left (x^8+\frac {59\,x^7}{5}+\frac {891\,x^6}{25}-\frac {183\,x^5}{5}-\frac {1179\,x^4}{5}+128\,x^3+608\,x^2-768\,x+256\right )+4\,\ln \relax (x)+x^2\,\ln \left (\frac {80\,\ln \relax (3)-80\,\ln \relax (x)-5\,x^2\,\ln \relax (x)-29\,x^3\,\ln \relax (x)-5\,x^4\,\ln \relax (x)-120\,x\,\ln \relax (3)+5\,x^2\,\ln \relax (3)+29\,x^3\,\ln \relax (3)+5\,x^4\,\ln \relax (3)+120\,x\,\ln \relax (x)+x^3}{x^2\,\ln \relax (x)-x^2\,\ln \relax (3)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________