Optimal. Leaf size=24 \[ 5 \left (e^{-5+x}+10 (3-4 x) (1+x)-\log \left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 5, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {14, 2194} \begin {gather*} -200 x^2-50 x+5 e^{x-5}-10 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5 e^{-5+x}-\frac {10 \left (1+5 x+40 x^2\right )}{x}\right ) \, dx\\ &=5 \int e^{-5+x} \, dx-10 \int \frac {1+5 x+40 x^2}{x} \, dx\\ &=5 e^{-5+x}-10 \int \left (5+\frac {1}{x}+40 x\right ) \, dx\\ &=5 e^{-5+x}-50 x-200 x^2-10 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 0.83 \begin {gather*} 5 \left (e^{-5+x}-10 x-40 x^2-2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 19, normalized size = 0.79 \begin {gather*} -200 \, x^{2} - 50 \, x + 5 \, e^{\left (x - 5\right )} - 10 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 27, normalized size = 1.12 \begin {gather*} -5 \, {\left (40 \, x^{2} e^{5} + 10 \, x e^{5} + 2 \, e^{5} \log \relax (x) - e^{x}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 20, normalized size = 0.83
method | result | size |
norman | \(-50 x -200 x^{2}+5 \,{\mathrm e}^{x -5}-10 \ln \relax (x )\) | \(20\) |
risch | \(-50 x -200 x^{2}+5 \,{\mathrm e}^{x -5}-10 \ln \relax (x )\) | \(20\) |
derivativedivides | \(5 \,{\mathrm e}^{x -5}-10 \ln \relax (x )-2050 x +10250-200 \left (x -5\right )^{2}\) | \(23\) |
default | \(5 \,{\mathrm e}^{x -5}-10 \ln \relax (x )-2050 x +10250-200 \left (x -5\right )^{2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 19, normalized size = 0.79 \begin {gather*} -200 \, x^{2} - 50 \, x + 5 \, e^{\left (x - 5\right )} - 10 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 19, normalized size = 0.79 \begin {gather*} 5\,{\mathrm {e}}^{x-5}-50\,x-10\,\ln \relax (x)-200\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 19, normalized size = 0.79 \begin {gather*} - 200 x^{2} - 50 x + 5 e^{x - 5} - 10 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________