Optimal. Leaf size=26 \[ -\log (x)+\log \left (\log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 15.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x+5 e^x x+\left (-2+e^x (5-5 x)-3 x+5 x^2\right ) \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right )+\left (\left (2+3 x-5 x^2+e^x (-5+5 x)\right ) \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right )+\left (2-5 e^x+5 x\right ) \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right ) \log \left (x \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right )\right )\right )}{\left (\left (-2 x-3 x^2+5 x^3+e^x \left (5 x-5 x^2\right )\right ) \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right )+\left (-2 x+5 e^x x-5 x^2\right ) \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right ) \log \left (x \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (\frac {1}{5} \left (-2+5 e^x-5 x\right )\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 x-5 e^x x+\left (-2+5 e^x-5 x\right ) (-1+x) \log \left (-\frac {2}{5}+e^x-x\right )-\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}{x \left (2-5 e^x+5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (1-x+\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx\\ &=\int \left (\frac {-3+5 x}{\left (2-5 e^x+5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}+\frac {-x-\log \left (-\frac {2}{5}+e^x-x\right )+x \log \left (-\frac {2}{5}+e^x-x\right )+\log \left (-\frac {2}{5}+e^x-x\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )-x \log \left (-\frac {2}{5}+e^x-x\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )+\log \left (-\frac {2}{5}+e^x-x\right ) \log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}{x \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}\right ) \, dx\\ &=\int \frac {-3+5 x}{\left (2-5 e^x+5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx+\int \frac {-x-\log \left (-\frac {2}{5}+e^x-x\right )+x \log \left (-\frac {2}{5}+e^x-x\right )+\log \left (-\frac {2}{5}+e^x-x\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )-x \log \left (-\frac {2}{5}+e^x-x\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )+\log \left (-\frac {2}{5}+e^x-x\right ) \log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}{x \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx\\ &=\int \left (\frac {3}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}-\frac {5 x}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}\right ) \, dx+\int \frac {x-\log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x+\left (1-x+\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )\right )}{x \log \left (-\frac {2}{5}+e^x-x\right ) \left (1-x+\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx\\ &=3 \int \frac {1}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx-5 \int \frac {x}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx+\int \left (-\frac {1}{x}+\frac {-x-\log \left (-\frac {2}{5}+e^x-x\right )+x \log \left (-\frac {2}{5}+e^x-x\right )}{x \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}\right ) \, dx\\ &=-\log (x)+3 \int \frac {1}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx-5 \int \frac {x}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx+\int \frac {-x-\log \left (-\frac {2}{5}+e^x-x\right )+x \log \left (-\frac {2}{5}+e^x-x\right )}{x \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx\\ &=-\log (x)+3 \int \frac {1}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx-5 \int \frac {x}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx+\int \left (\frac {1}{\left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}-\frac {1}{x \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}-\frac {1}{\log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )}\right ) \, dx\\ &=-\log (x)+3 \int \frac {1}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx-5 \int \frac {x}{\left (-2+5 e^x-5 x\right ) \log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx+\int \frac {1}{\left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx-\int \frac {1}{x \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx-\int \frac {1}{\log \left (-\frac {2}{5}+e^x-x\right ) \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right ) \log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 26, normalized size = 1.00 \begin {gather*} -\log (x)+\log \left (\log \left (-1+x-\log \left (x \log \left (-\frac {2}{5}+e^x-x\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 23, normalized size = 0.88 \begin {gather*} -\log \relax (x) + \log \left (\log \left (x - \log \left (x \log \left (-x + e^{x} - \frac {2}{5}\right )\right ) - 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 92, normalized size = 3.54
method | result | size |
risch | \(-\ln \relax (x )+\ln \left (\ln \left (-\ln \relax (x )-\ln \left (\ln \left ({\mathrm e}^{x}-x -\frac {2}{5}\right )\right )+\frac {i \pi \,\mathrm {csgn}\left (i x \ln \left ({\mathrm e}^{x}-x -\frac {2}{5}\right )\right ) \left (-\mathrm {csgn}\left (i x \ln \left ({\mathrm e}^{x}-x -\frac {2}{5}\right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \ln \left ({\mathrm e}^{x}-x -\frac {2}{5}\right )\right )+\mathrm {csgn}\left (i \ln \left ({\mathrm e}^{x}-x -\frac {2}{5}\right )\right )\right )}{2}+x -1\right )\right )\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 32, normalized size = 1.23 \begin {gather*} -\log \relax (x) + \log \left (\log \left (x - \log \relax (x) - \log \left (-\log \relax (5) + \log \left (-5 \, x + 5 \, e^{x} - 2\right )\right ) - 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.37, size = 23, normalized size = 0.88 \begin {gather*} \ln \left (\ln \left (x-\ln \left (x\,\ln \left ({\mathrm {e}}^x-x-\frac {2}{5}\right )\right )-1\right )\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________