Optimal. Leaf size=18 \[ -4+e^{\frac {1}{5} e^{5-3 x}}-2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 17, normalized size of antiderivative = 0.94, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {12, 2282, 2194} \begin {gather*} e^{\frac {1}{5} e^{5-3 x}}-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (-10-3 e^{5+\frac {1}{5} e^{5-3 x}-3 x}\right ) \, dx\\ &=-2 x-\frac {3}{5} \int e^{5+\frac {1}{5} e^{5-3 x}-3 x} \, dx\\ &=-2 x+\frac {1}{5} \operatorname {Subst}\left (\int e^{5+\frac {e^5 x}{5}} \, dx,x,e^{-3 x}\right )\\ &=e^{\frac {1}{5} e^{5-3 x}}-2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 17, normalized size = 0.94 \begin {gather*} e^{\frac {1}{5} e^{5-3 x}}-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.50, size = 34, normalized size = 1.89 \begin {gather*} -{\left (2 \, x e^{\left (-3 \, x + 5\right )} - e^{\left (-3 \, x + \frac {1}{5} \, e^{\left (-3 \, x + 5\right )} + 5\right )}\right )} e^{\left (3 \, x - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 13, normalized size = 0.72 \begin {gather*} -2 \, x + e^{\left (\frac {1}{5} \, e^{\left (-3 \, x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 14, normalized size = 0.78
method | result | size |
default | \(-2 x +{\mathrm e}^{\frac {{\mathrm e}^{-3 x +5}}{5}}\) | \(14\) |
norman | \(-2 x +{\mathrm e}^{\frac {{\mathrm e}^{-3 x +5}}{5}}\) | \(14\) |
risch | \(-2 x +{\mathrm e}^{\frac {{\mathrm e}^{-3 x +5}}{5}}\) | \(14\) |
derivativedivides | \(\frac {2 \ln \left (\frac {{\mathrm e}^{-3 x +5}}{5}\right )}{3}+{\mathrm e}^{\frac {{\mathrm e}^{-3 x +5}}{5}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 13, normalized size = 0.72 \begin {gather*} -2 \, x + e^{\left (\frac {1}{5} \, e^{\left (-3 \, x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 13, normalized size = 0.72 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{5-3\,x}}{5}}-2\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 12, normalized size = 0.67 \begin {gather*} - 2 x + e^{\frac {e^{5 - 3 x}}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________