Optimal. Leaf size=25 \[ -e+e^x+\frac {5+25 e^2 \left (\frac {1}{x}-x\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {14, 2194, 37} \begin {gather*} \frac {\left (x+10 e^2\right )^2}{4 e^2 x^2}+e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 37
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x-\frac {5 \left (10 e^2+x\right )}{x^3}\right ) \, dx\\ &=-\left (5 \int \frac {10 e^2+x}{x^3} \, dx\right )+\int e^x \, dx\\ &=e^x+\frac {\left (10 e^2+x\right )^2}{4 e^2 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 0.68 \begin {gather*} e^x+\frac {25 e^2}{x^2}+\frac {5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 18, normalized size = 0.72 \begin {gather*} \frac {x^{2} e^{x} + 5 \, x + 25 \, e^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 18, normalized size = 0.72 \begin {gather*} \frac {x^{2} e^{x} + 5 \, x + 25 \, e^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 16, normalized size = 0.64
method | result | size |
default | \(\frac {5}{x}+\frac {25 \,{\mathrm e}^{2}}{x^{2}}+{\mathrm e}^{x}\) | \(16\) |
risch | \(\frac {25 \,{\mathrm e}^{2}+5 x}{x^{2}}+{\mathrm e}^{x}\) | \(16\) |
norman | \(\frac {{\mathrm e}^{x} x^{2}+5 x +25 \,{\mathrm e}^{2}}{x^{2}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 15, normalized size = 0.60 \begin {gather*} \frac {5}{x} + \frac {25 \, e^{2}}{x^{2}} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 15, normalized size = 0.60 \begin {gather*} {\mathrm {e}}^x+\frac {5\,x+25\,{\mathrm {e}}^2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.60 \begin {gather*} e^{x} - \frac {- 5 x - 25 e^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________