Optimal. Leaf size=27 \[ \frac {1}{5} \log \left (-4+\frac {e^{3/x} (-5+16 e)}{3 x}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x^3+e^{3/x} (15+e (-48-16 x)+5 x)}{-60 x^3+15 x^4+e^{3/x} \left (-25 x^2+80 e x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-3-x}{5 x^2}+\frac {3 \left (-12-x+2 x^2\right )}{5 x \left (16 \left (1-\frac {5}{16 e}\right ) e^{1+\frac {3}{x}}-12 x+3 x^2\right )}\right ) \, dx\\ &=\frac {1}{5} \int \frac {-3-x}{x^2} \, dx+\frac {3}{5} \int \frac {-12-x+2 x^2}{x \left (16 \left (1-\frac {5}{16 e}\right ) e^{1+\frac {3}{x}}-12 x+3 x^2\right )} \, dx\\ &=\frac {1}{5} \int \left (-\frac {3}{x^2}-\frac {1}{x}\right ) \, dx+\frac {3}{5} \int \left (\frac {1}{-16 \left (1-\frac {5}{16 e}\right ) e^{1+\frac {3}{x}}+12 x-3 x^2}+\frac {12}{x \left (-16 \left (1-\frac {5}{16 e}\right ) e^{1+\frac {3}{x}}+12 x-3 x^2\right )}+\frac {2 x}{16 \left (1-\frac {5}{16 e}\right ) e^{1+\frac {3}{x}}-12 x+3 x^2}\right ) \, dx\\ &=\frac {3}{5 x}-\frac {\log (x)}{5}+\frac {3}{5} \int \frac {1}{-16 \left (1-\frac {5}{16 e}\right ) e^{1+\frac {3}{x}}+12 x-3 x^2} \, dx+\frac {6}{5} \int \frac {x}{16 \left (1-\frac {5}{16 e}\right ) e^{1+\frac {3}{x}}-12 x+3 x^2} \, dx+\frac {36}{5} \int \frac {1}{x \left (-16 \left (1-\frac {5}{16 e}\right ) e^{1+\frac {3}{x}}+12 x-3 x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 39, normalized size = 1.44 \begin {gather*} \frac {1}{5} \left (-\log (x)+\log \left (16 e^{1+\frac {3}{x}}-5 e^{3/x}-12 x+3 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 30, normalized size = 1.11 \begin {gather*} \frac {1}{5} \, \log \left (3 \, x^{2} + {\left (16 \, e - 5\right )} e^{\frac {3}{x}} - 12 \, x\right ) - \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 43, normalized size = 1.59 \begin {gather*} -\frac {1}{5} \, \log \left (\frac {3}{x}\right ) + \frac {1}{5} \, \log \left (-\frac {108}{x} - \frac {45 \, e^{\frac {3}{x}}}{x^{2}} + \frac {144 \, e^{\left (\frac {3}{x} + 1\right )}}{x^{2}} + 27\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 30, normalized size = 1.11
method | result | size |
risch | \(-\frac {\ln \relax (x )}{5}+\frac {\ln \left ({\mathrm e}^{\frac {3}{x}}+\frac {3 \left (x -4\right ) x}{16 \,{\mathrm e}-5}\right )}{5}\) | \(30\) |
norman | \(-\frac {\ln \relax (x )}{5}+\frac {\ln \left (16 \,{\mathrm e} \,{\mathrm e}^{\frac {3}{x}}+3 x^{2}-5 \,{\mathrm e}^{\frac {3}{x}}-12 x \right )}{5}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 39, normalized size = 1.44 \begin {gather*} -\frac {1}{5} \, \log \relax (x) + \frac {1}{5} \, \log \left (\frac {3 \, x^{2} + {\left (16 \, e - 5\right )} e^{\frac {3}{x}} - 12 \, x}{16 \, e - 5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{3/x}\,\left (5\,x-\mathrm {e}\,\left (16\,x+48\right )+15\right )+3\,x^3}{{\mathrm {e}}^{3/x}\,\left (80\,x^2\,\mathrm {e}-25\,x^2\right )-60\,x^3+15\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 27, normalized size = 1.00 \begin {gather*} - \frac {\log {\relax (x )}}{5} + \frac {\log {\left (\frac {3 x^{2} - 12 x}{-5 + 16 e} + e^{\frac {3}{x}} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________