Optimal. Leaf size=34 \[ 1+x+\frac {1}{3} \left (3-\frac {5+x}{x}\right ) \left (x+e^{-x} \left (-4+\frac {\log (\log (3))}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.59, antiderivative size = 103, normalized size of antiderivative = 3.03, number of steps used = 12, number of rules used = 6, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 6742, 2199, 2194, 2177, 2178} \begin {gather*} -\frac {2}{3} (10+\log (\log (3))) \text {Ei}(-x)+\frac {5}{3} \log (\log (3)) \text {Ei}(-x)+\frac {1}{3} (20-3 \log (\log (3))) \text {Ei}(-x)-\frac {5 e^{-x} \log (\log (3))}{3 x^2}+\frac {5 x}{3}-\frac {8 e^{-x}}{3}+\frac {5 e^{-x} \log (\log (3))}{3 x}+\frac {e^{-x} (20-3 \log (\log (3)))}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-x} \left (-20 x-20 x^2+8 x^3+5 e^x x^3+\left (10+3 x-2 x^2\right ) \log (\log (3))\right )}{x^3} \, dx\\ &=\frac {1}{3} \int \left (5+\frac {e^{-x} \left (8 x^3-x (20-3 \log (\log (3)))+10 \log (\log (3))-2 x^2 (10+\log (\log (3)))\right )}{x^3}\right ) \, dx\\ &=\frac {5 x}{3}+\frac {1}{3} \int \frac {e^{-x} \left (8 x^3-x (20-3 \log (\log (3)))+10 \log (\log (3))-2 x^2 (10+\log (\log (3)))\right )}{x^3} \, dx\\ &=\frac {5 x}{3}+\frac {1}{3} \int \left (8 e^{-x}+\frac {10 e^{-x} \log (\log (3))}{x^3}-\frac {2 e^{-x} (10+\log (\log (3)))}{x}+\frac {e^{-x} (-20+3 \log (\log (3)))}{x^2}\right ) \, dx\\ &=\frac {5 x}{3}+\frac {8}{3} \int e^{-x} \, dx+\frac {1}{3} (10 \log (\log (3))) \int \frac {e^{-x}}{x^3} \, dx-\frac {1}{3} (2 (10+\log (\log (3)))) \int \frac {e^{-x}}{x} \, dx+\frac {1}{3} (-20+3 \log (\log (3))) \int \frac {e^{-x}}{x^2} \, dx\\ &=-\frac {8 e^{-x}}{3}+\frac {5 x}{3}+\frac {e^{-x} (20-3 \log (\log (3)))}{3 x}-\frac {5 e^{-x} \log (\log (3))}{3 x^2}-\frac {2}{3} \text {Ei}(-x) (10+\log (\log (3)))+\frac {1}{3} (20-3 \log (\log (3))) \int \frac {e^{-x}}{x} \, dx-\frac {1}{3} (5 \log (\log (3))) \int \frac {e^{-x}}{x^2} \, dx\\ &=-\frac {8 e^{-x}}{3}+\frac {5 x}{3}+\frac {e^{-x} (20-3 \log (\log (3)))}{3 x}+\frac {1}{3} \text {Ei}(-x) (20-3 \log (\log (3)))-\frac {5 e^{-x} \log (\log (3))}{3 x^2}+\frac {5 e^{-x} \log (\log (3))}{3 x}-\frac {2}{3} \text {Ei}(-x) (10+\log (\log (3)))+\frac {1}{3} (5 \log (\log (3))) \int \frac {e^{-x}}{x} \, dx\\ &=-\frac {8 e^{-x}}{3}+\frac {5 x}{3}+\frac {e^{-x} (20-3 \log (\log (3)))}{3 x}+\frac {1}{3} \text {Ei}(-x) (20-3 \log (\log (3)))-\frac {5 e^{-x} \log (\log (3))}{3 x^2}+\frac {5 e^{-x} \log (\log (3))}{3 x}+\frac {5}{3} \text {Ei}(-x) \log (\log (3))-\frac {2}{3} \text {Ei}(-x) (10+\log (\log (3)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 39, normalized size = 1.15 \begin {gather*} \frac {e^{-x} \left (-8 x^2+5 e^x x^3-5 \log (\log (3))+2 x (10+\log (\log (3)))\right )}{3 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.48, size = 34, normalized size = 1.00 \begin {gather*} \frac {{\left (5 \, x^{3} e^{x} - 8 \, x^{2} + {\left (2 \, x - 5\right )} \log \left (\log \relax (3)\right ) + 20 \, x\right )} e^{\left (-x\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 46, normalized size = 1.35 \begin {gather*} \frac {5 \, x^{3} - 8 \, x^{2} e^{\left (-x\right )} + 2 \, x e^{\left (-x\right )} \log \left (\log \relax (3)\right ) + 20 \, x e^{\left (-x\right )} - 5 \, e^{\left (-x\right )} \log \left (\log \relax (3)\right )}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 34, normalized size = 1.00
method | result | size |
risch | \(\frac {5 x}{3}+\frac {\left (2 \ln \left (\ln \relax (3)\right ) x -8 x^{2}-5 \ln \left (\ln \relax (3)\right )+20 x \right ) {\mathrm e}^{-x}}{3 x^{2}}\) | \(34\) |
norman | \(\frac {\left (\left (\frac {2 \ln \left (\ln \relax (3)\right )}{3}+\frac {20}{3}\right ) x -\frac {8 x^{2}}{3}+\frac {5 \,{\mathrm e}^{x} x^{3}}{3}-\frac {5 \ln \left (\ln \relax (3)\right )}{3}\right ) {\mathrm e}^{-x}}{x^{2}}\) | \(36\) |
default | \(\frac {5 x}{3}-\frac {8 \,{\mathrm e}^{-x}}{3}+\frac {20 \,{\mathrm e}^{-x}}{3 x}-\frac {5 \,{\mathrm e}^{-x} \ln \left (\ln \relax (3)\right )}{3 x^{2}}+\frac {2 \,{\mathrm e}^{-x} \ln \left (\ln \relax (3)\right )}{3 x}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 46, normalized size = 1.35 \begin {gather*} -\frac {2}{3} \, {\rm Ei}\left (-x\right ) \log \left (\log \relax (3)\right ) - \Gamma \left (-1, x\right ) \log \left (\log \relax (3)\right ) - \frac {10}{3} \, \Gamma \left (-2, x\right ) \log \left (\log \relax (3)\right ) + \frac {5}{3} \, x - \frac {20}{3} \, {\rm Ei}\left (-x\right ) - \frac {8}{3} \, e^{\left (-x\right )} + \frac {20}{3} \, \Gamma \left (-1, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.42, size = 39, normalized size = 1.15 \begin {gather*} \frac {5\,x}{3}-\frac {8\,{\mathrm {e}}^{-x}}{3}-\frac {\frac {5\,{\mathrm {e}}^{-x}\,\ln \left (\ln \relax (3)\right )}{3}-\frac {x\,{\mathrm {e}}^{-x}\,\left (2\,\ln \left (\ln \relax (3)\right )+20\right )}{3}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 36, normalized size = 1.06 \begin {gather*} \frac {5 x}{3} + \frac {\left (- 8 x^{2} + 2 x \log {\left (\log {\relax (3 )} \right )} + 20 x - 5 \log {\left (\log {\relax (3 )} \right )}\right ) e^{- x}}{3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________