Optimal. Leaf size=24 \[ \log \left (e^{25+x}-(-1-e-x+x \log (\log (2)))^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 46, normalized size of antiderivative = 1.92, number of steps used = 3, number of rules used = 2, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6, 6684} \begin {gather*} \log \left (x^2 \left (1+\log ^2(\log (2))\right )-2 \left (x^2+e x+x\right ) \log (\log (2))+2 x-e^{x+25}+2 e (x+1)+e^2+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+2 e-e^{25+x}+(-2-2 e-4 x) \log (\log (2))+x \left (2+2 \log ^2(\log (2))\right )}{1+e^2-e^{25+x}+2 x+x^2+e (2+2 x)+\left (-2 x-2 e x-2 x^2\right ) \log (\log (2))+x^2 \log ^2(\log (2))} \, dx\\ &=\int \frac {2+2 e-e^{25+x}+(-2-2 e-4 x) \log (\log (2))+x \left (2+2 \log ^2(\log (2))\right )}{1+e^2-e^{25+x}+2 x+e (2+2 x)+\left (-2 x-2 e x-2 x^2\right ) \log (\log (2))+x^2 \left (1+\log ^2(\log (2))\right )} \, dx\\ &=\log \left (1+e^2-e^{25+x}+2 x+2 e (1+x)-2 \left (x+e x+x^2\right ) \log (\log (2))+x^2 \left (1+\log ^2(\log (2))\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 37, normalized size = 1.54 \begin {gather*} \log \left (-e^2+e^{25+x}+2 e (-1+x (-1+\log (\log (2))))-(-1+x (-1+\log (\log (2))))^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.42, size = 50, normalized size = 2.08 \begin {gather*} \log \left (-x^{2} \log \left (\log \relax (2)\right )^{2} - x^{2} - 2 \, {\left (x + 1\right )} e + 2 \, {\left (x^{2} + x e + x\right )} \log \left (\log \relax (2)\right ) - 2 \, x - e^{2} + e^{\left (x + 25\right )} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 60, normalized size = 2.50 \begin {gather*} \log \left (-x^{2} \log \left (\log \relax (2)\right )^{2} + 2 \, x^{2} \log \left (\log \relax (2)\right ) + 2 \, x e \log \left (\log \relax (2)\right ) - x^{2} - 2 \, x e + 2 \, x \log \left (\log \relax (2)\right ) - 2 \, x - e^{2} - 2 \, e + e^{\left (x + 25\right )} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 55, normalized size = 2.29
method | result | size |
derivativedivides | \(\ln \left (x^{2} \ln \left (\ln \relax (2)\right )^{2}+\left (-2 x \,{\mathrm e}-2 x^{2}-2 x \right ) \ln \left (\ln \relax (2)\right )-{\mathrm e}^{x +25}+{\mathrm e}^{2}+\left (2 x +2\right ) {\mathrm e}+x^{2}+2 x +1\right )\) | \(55\) |
default | \(\ln \left (x^{2} \ln \left (\ln \relax (2)\right )^{2}+\left (-2 x \,{\mathrm e}-2 x^{2}-2 x \right ) \ln \left (\ln \relax (2)\right )-{\mathrm e}^{x +25}+{\mathrm e}^{2}+\left (2 x +2\right ) {\mathrm e}+x^{2}+2 x +1\right )\) | \(55\) |
norman | \(\ln \left (x^{2} \ln \left (\ln \relax (2)\right )^{2}-2 \,{\mathrm e} \ln \left (\ln \relax (2)\right ) x -2 x^{2} \ln \left (\ln \relax (2)\right )+{\mathrm e}^{2}+2 x \,{\mathrm e}-2 x \ln \left (\ln \relax (2)\right )+x^{2}+2 \,{\mathrm e}-{\mathrm e}^{x +25}+2 x +1\right )\) | \(60\) |
risch | \(-25+\ln \left (-x^{2} \ln \left (\ln \relax (2)\right )^{2}+2 \,{\mathrm e} \ln \left (\ln \relax (2)\right ) x +2 x^{2} \ln \left (\ln \relax (2)\right )-{\mathrm e}^{2}-2 x \,{\mathrm e}+2 x \ln \left (\ln \relax (2)\right )-x^{2}-2 \,{\mathrm e}-2 x +{\mathrm e}^{x +25}-1\right )\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 47, normalized size = 1.96 \begin {gather*} \log \left (x^{2} \log \left (\log \relax (2)\right )^{2} + x^{2} + 2 \, {\left (x + 1\right )} e - 2 \, {\left (x^{2} + x e + x\right )} \log \left (\log \relax (2)\right ) + 2 \, x + e^{2} - e^{\left (x + 25\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.28, size = 53, normalized size = 2.21 \begin {gather*} \ln \left (2\,x-{\mathrm {e}}^{x+25}+2\,\mathrm {e}+{\mathrm {e}}^2-2\,x^2\,\ln \left (\ln \relax (2)\right )+2\,x\,\mathrm {e}+x^2\,{\ln \left (\ln \relax (2)\right )}^2+x^2-2\,x\,\ln \left (\ln \relax (2)\right )\,\left (\mathrm {e}+1\right )+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 70, normalized size = 2.92 \begin {gather*} \log {\left (- x^{2} + 2 x^{2} \log {\left (\log {\relax (2 )} \right )} - x^{2} \log {\left (\log {\relax (2 )} \right )}^{2} - 2 e x - 2 x + 2 e x \log {\left (\log {\relax (2 )} \right )} + 2 x \log {\left (\log {\relax (2 )} \right )} + e^{x + 25} - e^{2} - 2 e - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________