3.6.33 x2+2xlog(3)+log2(3)+ex(4+4x+4log(3))log(log(4))5x2+x3+(10x+2x2)log(3)+(5+x)log2(3)+(16x2+32xlog(3)+16log2(3)+ex(4x+4log(3)))log(log(4))dx

Optimal. Leaf size=25 log(4+exx+log(3)+5+x4log(log(4)))

________________________________________________________________________________________

Rubi [F]  time = 1.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} x2+2xlog(3)+log2(3)+ex(4+4x+4log(3))log(log(4))5x2+x3+(10x+2x2)log(3)+(5+x)log2(3)+(16x2+32xlog(3)+16log2(3)+ex(4x+4log(3)))log(log(4))dx

Verification is not applicable to the result.

[In]

Int[(x^2 + 2*x*Log[3] + Log[3]^2 + E^x*(-4 + 4*x + 4*Log[3])*Log[Log[4]])/(5*x^2 + x^3 + (10*x + 2*x^2)*Log[3]
 + (5 + x)*Log[3]^2 + (16*x^2 + 32*x*Log[3] + 16*Log[3]^2 + E^x*(4*x + 4*Log[3]))*Log[Log[4]]),x]

[Out]

x - Log[x + Log[3]] - (5 - Log[81] + 16*(1 - Log[3])*Log[Log[4]])*Defer[Int][(-x^2 - 4*E^x*Log[Log[4]] - 5*Log
[3]*(1 + (16*Log[Log[4]])/5) - 5*x*(1 + (Log[3] + 16*Log[Log[4]])/5))^(-1), x] + Defer[Int][x^2/(-x^2 - 4*E^x*
Log[Log[4]] - 5*Log[3]*(1 + (16*Log[Log[4]])/5) - 5*x*(1 + (Log[3] + 16*Log[Log[4]])/5)), x] - (3 + Log[3] + 1
6*Log[Log[4]])*Defer[Int][x/(x^2 + 4*E^x*Log[Log[4]] + 5*Log[3]*(1 + (16*Log[Log[4]])/5) + 5*x*(1 + (Log[3] +
16*Log[Log[4]])/5)), x]

Rubi steps

integral=x2+2xlog(3)+log2(3)+ex(4+4x+4log(3))log(log(4))(x+log(3))(x2+4exlog(log(4))+5log(3)(1+165log(log(4)))+5x(1+15(log(3)+16log(log(4)))))dx=(1+x+log(3)x+log(3)+5x2log(81)+16(1log(3))log(log(4))x(3+log(3)+16log(log(4)))x2+4exlog(log(4))+5log(3)(1+165log(log(4)))+5x(1+15(log(3)+16log(log(4)))))dx=1+x+log(3)x+log(3)dx+5x2log(81)+16(1log(3))log(log(4))x(3+log(3)+16log(log(4)))x2+4exlog(log(4))+5log(3)(1+165log(log(4)))+5x(1+15(log(3)+16log(log(4))))dx=(1+1xlog(3))dx+(x2x24exlog(log(4))5log(3)(1+165log(log(4)))5x(1+15(log(3)+16log(log(4))))+log(81)(1+5+16(1+log(3))log(log(4))log(81))x24exlog(log(4))5log(3)(1+165log(log(4)))5x(1+15(log(3)+16log(log(4))))+x(3log(3)16log(log(4)))x2+4exlog(log(4))+5log(3)(1+165log(log(4)))+5x(1+15(log(3)+16log(log(4)))))dx=xlog(x+log(3))+(3log(3)16log(log(4)))xx2+4exlog(log(4))+5log(3)(1+165log(log(4)))+5x(1+15(log(3)+16log(log(4))))dx+(5+log(81)16(1log(3))log(log(4)))1x24exlog(log(4))5log(3)(1+165log(log(4)))5x(1+15(log(3)+16log(log(4))))dx+x2x24exlog(log(4))5log(3)(1+165log(log(4)))5x(1+15(log(3)+16log(log(4))))dx

________________________________________________________________________________________

Mathematica [F]  time = 2.13, size = 0, normalized size = 0.00 x2+2xlog(3)+log2(3)+ex(4+4x+4log(3))log(log(4))5x2+x3+(10x+2x2)log(3)+(5+x)log2(3)+(16x2+32xlog(3)+16log2(3)+ex(4x+4log(3)))log(log(4))dx

Verification is not applicable to the result.

[In]

Integrate[(x^2 + 2*x*Log[3] + Log[3]^2 + E^x*(-4 + 4*x + 4*Log[3])*Log[Log[4]])/(5*x^2 + x^3 + (10*x + 2*x^2)*
Log[3] + (5 + x)*Log[3]^2 + (16*x^2 + 32*x*Log[3] + 16*Log[3]^2 + E^x*(4*x + 4*Log[3]))*Log[Log[4]]),x]

[Out]

Integrate[(x^2 + 2*x*Log[3] + Log[3]^2 + E^x*(-4 + 4*x + 4*Log[3])*Log[Log[4]])/(5*x^2 + x^3 + (10*x + 2*x^2)*
Log[3] + (5 + x)*Log[3]^2 + (16*x^2 + 32*x*Log[3] + 16*Log[3]^2 + E^x*(4*x + 4*Log[3]))*Log[Log[4]]), x]

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 39, normalized size = 1.56 log(x2+(x+5)log(3)+4(4x+ex+4log(3))log(2log(2))+5x)log(x+log(3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*log(3)+4*x-4)*exp(x)*log(2*log(2))+log(3)^2+2*x*log(3)+x^2)/(((4*log(3)+4*x)*exp(x)+16*log(3)^2+
32*x*log(3)+16*x^2)*log(2*log(2))+(5+x)*log(3)^2+(2*x^2+10*x)*log(3)+x^3+5*x^2),x, algorithm="fricas")

[Out]

log(x^2 + (x + 5)*log(3) + 4*(4*x + e^x + 4*log(3))*log(2*log(2)) + 5*x) - log(x + log(3))

________________________________________________________________________________________

giac [B]  time = 0.39, size = 61, normalized size = 2.44 log(x2+xlog(3)+16xlog(2)+4exlog(2)+16log(3)log(2)+16xlog(log(2))+4exlog(log(2))+16log(3)log(log(2))+5x+5log(3))log(x+log(3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*log(3)+4*x-4)*exp(x)*log(2*log(2))+log(3)^2+2*x*log(3)+x^2)/(((4*log(3)+4*x)*exp(x)+16*log(3)^2+
32*x*log(3)+16*x^2)*log(2*log(2))+(5+x)*log(3)^2+(2*x^2+10*x)*log(3)+x^3+5*x^2),x, algorithm="giac")

[Out]

log(x^2 + x*log(3) + 16*x*log(2) + 4*e^x*log(2) + 16*log(3)*log(2) + 16*x*log(log(2)) + 4*e^x*log(log(2)) + 16
*log(3)*log(log(2)) + 5*x + 5*log(3)) - log(x + log(3))

________________________________________________________________________________________

maple [B]  time = 0.36, size = 51, normalized size = 2.04




method result size



norman ln(ln(3)+x)+ln(16ln(3)ln(2ln(2))+xln(3)+16xln(2ln(2))+4exln(2ln(2))+x2+5ln(3)+5x) 51
risch ln(ln(3)+x)+ln(ex+16ln(2)ln(3)+16xln(2)+16ln(3)ln(ln(2))+xln(3)+16xln(ln(2))+x2+5ln(3)+5x4ln(2)+4ln(ln(2))) 62



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*ln(3)+4*x-4)*exp(x)*ln(2*ln(2))+ln(3)^2+2*x*ln(3)+x^2)/(((4*ln(3)+4*x)*exp(x)+16*ln(3)^2+32*x*ln(3)+16
*x^2)*ln(2*ln(2))+(5+x)*ln(3)^2+(2*x^2+10*x)*ln(3)+x^3+5*x^2),x,method=_RETURNVERBOSE)

[Out]

-ln(ln(3)+x)+ln(16*ln(3)*ln(2*ln(2))+x*ln(3)+16*x*ln(2*ln(2))+4*exp(x)*ln(2*ln(2))+x^2+5*ln(3)+5*x)

________________________________________________________________________________________

maxima [B]  time = 0.50, size = 64, normalized size = 2.56 log(x+log(3))+log(x2+x(log(3)+16log(2)+16log(log(2))+5)+4(log(2)+log(log(2)))ex+(16log(log(2))+5)log(3)+16log(3)log(2)4(log(2)+log(log(2))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*log(3)+4*x-4)*exp(x)*log(2*log(2))+log(3)^2+2*x*log(3)+x^2)/(((4*log(3)+4*x)*exp(x)+16*log(3)^2+
32*x*log(3)+16*x^2)*log(2*log(2))+(5+x)*log(3)^2+(2*x^2+10*x)*log(3)+x^3+5*x^2),x, algorithm="maxima")

[Out]

-log(x + log(3)) + log(1/4*(x^2 + x*(log(3) + 16*log(2) + 16*log(log(2)) + 5) + 4*(log(2) + log(log(2)))*e^x +
 (16*log(log(2)) + 5)*log(3) + 16*log(3)*log(2))/(log(2) + log(log(2))))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 2xln(3)+ln(3)2+x2+ln(2ln(2))ex(4x+4ln(3)4)ln(3)2(x+5)+ln(3)(2x2+10x)+5x2+x3+ln(2ln(2))(ex(4x+4ln(3))+32xln(3)+16ln(3)2+16x2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x*log(3) + log(3)^2 + x^2 + log(2*log(2))*exp(x)*(4*x + 4*log(3) - 4))/(log(3)^2*(x + 5) + log(3)*(10*x
 + 2*x^2) + 5*x^2 + x^3 + log(2*log(2))*(exp(x)*(4*x + 4*log(3)) + 32*x*log(3) + 16*log(3)^2 + 16*x^2)),x)

[Out]

int((2*x*log(3) + log(3)^2 + x^2 + log(2*log(2))*exp(x)*(4*x + 4*log(3) - 4))/(log(3)^2*(x + 5) + log(3)*(10*x
 + 2*x^2) + 5*x^2 + x^3 + log(2*log(2))*(exp(x)*(4*x + 4*log(3)) + 32*x*log(3) + 16*log(3)^2 + 16*x^2)), x)

________________________________________________________________________________________

sympy [B]  time = 0.60, size = 73, normalized size = 2.92 log(x+log(3))+log(x2+16xlog(log(2))+xlog(3)+5x+16xlog(2)+16log(3)log(log(2))+5log(3)+16log(2)log(3)4log(log(2))+4log(2)+ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*ln(3)+4*x-4)*exp(x)*ln(2*ln(2))+ln(3)**2+2*x*ln(3)+x**2)/(((4*ln(3)+4*x)*exp(x)+16*ln(3)**2+32*x
*ln(3)+16*x**2)*ln(2*ln(2))+(5+x)*ln(3)**2+(2*x**2+10*x)*ln(3)+x**3+5*x**2),x)

[Out]

-log(x + log(3)) + log((x**2 + 16*x*log(log(2)) + x*log(3) + 5*x + 16*x*log(2) + 16*log(3)*log(log(2)) + 5*log
(3) + 16*log(2)*log(3))/(4*log(log(2)) + 4*log(2)) + exp(x))

________________________________________________________________________________________