Optimal. Leaf size=20 \[ \frac {4 x^2}{-x \log ^2(x)+\log (x+\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 2.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x-4 x^2+8 x^3 \log (x)+\left (8 x^2-4 x^3\right ) \log ^2(x)-4 x^2 \log ^3(x)+\left (8 x^2+8 x \log (x)\right ) \log (x+\log (x))}{x^3 \log ^4(x)+x^2 \log ^5(x)+\left (-2 x^2 \log ^2(x)-2 x \log ^3(x)\right ) \log (x+\log (x))+(x+\log (x)) \log ^2(x+\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x \left (-1-x-(-2+x) x \log ^2(x)-x \log ^3(x)+2 x \log (x+\log (x))+2 \log (x) \left (x^2+\log (x+\log (x))\right )\right )}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx\\ &=4 \int \frac {x \left (-1-x-(-2+x) x \log ^2(x)-x \log ^3(x)+2 x \log (x+\log (x))+2 \log (x) \left (x^2+\log (x+\log (x))\right )\right )}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx\\ &=4 \int \left (\frac {x \left (-1-x+2 x^2 \log (x)+2 x \log ^2(x)+x^2 \log ^2(x)+x \log ^3(x)\right )}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2}-\frac {2 x}{x \log ^2(x)-\log (x+\log (x))}\right ) \, dx\\ &=4 \int \frac {x \left (-1-x+2 x^2 \log (x)+2 x \log ^2(x)+x^2 \log ^2(x)+x \log ^3(x)\right )}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx-8 \int \frac {x}{x \log ^2(x)-\log (x+\log (x))} \, dx\\ &=4 \int \left (-\frac {x}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2}-\frac {x^2}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2}+\frac {2 x^3 \log (x)}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2}+\frac {2 x^2 \log ^2(x)}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2}+\frac {x^3 \log ^2(x)}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2}+\frac {x^2 \log ^3(x)}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2}\right ) \, dx-8 \int \frac {x}{x \log ^2(x)-\log (x+\log (x))} \, dx\\ &=-\left (4 \int \frac {x}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx\right )-4 \int \frac {x^2}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx+4 \int \frac {x^3 \log ^2(x)}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx+4 \int \frac {x^2 \log ^3(x)}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx+8 \int \frac {x^3 \log (x)}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx+8 \int \frac {x^2 \log ^2(x)}{(x+\log (x)) \left (x \log ^2(x)-\log (x+\log (x))\right )^2} \, dx-8 \int \frac {x}{x \log ^2(x)-\log (x+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.94, size = 20, normalized size = 1.00 \begin {gather*} \frac {4 x^2}{-x \log ^2(x)+\log (x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 21, normalized size = 1.05 \begin {gather*} -\frac {4 \, x^{2}}{x \log \relax (x)^{2} - \log \left (x + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 21, normalized size = 1.05 \begin {gather*} -\frac {4 \, x^{2}}{x \log \relax (x)^{2} - \log \left (x + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.10
method | result | size |
risch | \(-\frac {4 x^{2}}{x \ln \relax (x )^{2}-\ln \left (x +\ln \relax (x )\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 21, normalized size = 1.05 \begin {gather*} -\frac {4 \, x^{2}}{x \log \relax (x)^{2} - \log \left (x + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {4\,x-8\,x^3\,\ln \relax (x)-{\ln \relax (x)}^2\,\left (8\,x^2-4\,x^3\right )+4\,x^2\,{\ln \relax (x)}^3+4\,x^2-\ln \left (x+\ln \relax (x)\right )\,\left (8\,x\,\ln \relax (x)+8\,x^2\right )}{x^2\,{\ln \relax (x)}^5+x^3\,{\ln \relax (x)}^4-\ln \left (x+\ln \relax (x)\right )\,\left (2\,x^2\,{\ln \relax (x)}^2+2\,x\,{\ln \relax (x)}^3\right )+{\ln \left (x+\ln \relax (x)\right )}^2\,\left (x+\ln \relax (x)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 17, normalized size = 0.85 \begin {gather*} \frac {4 x^{2}}{- x \log {\relax (x )}^{2} + \log {\left (x + \log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________