Optimal. Leaf size=28 \[ -4+x+\log ^2\left (1+\frac {1-x}{4}+x+\frac {1}{2} (-x+\log (4))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 20, normalized size of antiderivative = 0.71, number of steps used = 7, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {6688, 6742, 43, 2390, 2301} \begin {gather*} x+\log ^2(x+5+\log (16))-\log (16) \log (x+5+\log (16)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2301
Rule 2390
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5+x+2 \log (5+x+\log (16))}{5+x+\log (16)} \, dx\\ &=\int \left (\frac {5+x}{5+x+\log (16)}+\frac {2 \log (5+x+\log (16))}{5+x+\log (16)}\right ) \, dx\\ &=2 \int \frac {\log (5+x+\log (16))}{5+x+\log (16)} \, dx+\int \frac {5+x}{5+x+\log (16)} \, dx\\ &=2 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,5+x+\log (16)\right )+\int \left (1-\frac {\log (16)}{5+x+\log (16)}\right ) \, dx\\ &=x-\log (16) \log (5+x+\log (16))+\log ^2(5+x+\log (16))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 0.75 \begin {gather*} x+\frac {1}{4} (-\log (16)+2 \log (5+x+\log (16)))^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.25, size = 12, normalized size = 0.43 \begin {gather*} \log \left (\frac {1}{4} \, x + \log \relax (2) + \frac {5}{4}\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 24, normalized size = 0.86 \begin {gather*} -4 \, \log \relax (2) \log \left (x + 4 \, \log \relax (2) + 5\right ) + \log \left (x + 4 \, \log \relax (2) + 5\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 13, normalized size = 0.46
method | result | size |
norman | \(x +\ln \left (\ln \relax (2)+\frac {5}{4}+\frac {x}{4}\right )^{2}\) | \(13\) |
risch | \(x +\ln \left (\ln \relax (2)+\frac {5}{4}+\frac {x}{4}\right )^{2}\) | \(13\) |
derivativedivides | \(\ln \left (\ln \relax (2)+\frac {5}{4}+\frac {x}{4}\right )^{2}+4 \ln \relax (2)+5+x\) | \(18\) |
default | \(\ln \left (\ln \relax (2)+\frac {5}{4}+\frac {x}{4}\right )^{2}+4 \ln \relax (2)+5+x\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 38, normalized size = 1.36 \begin {gather*} -{\left (4 \, \log \relax (2) + 5\right )} \log \left (x + 4 \, \log \relax (2) + 5\right ) + \log \left (x + 4 \, \log \relax (2) + 5\right )^{2} + x + 5 \, \log \left (x + 4 \, \log \relax (2) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.64, size = 12, normalized size = 0.43 \begin {gather*} {\ln \left (\frac {x}{4}+\ln \relax (2)+\frac {5}{4}\right )}^2+x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.50 \begin {gather*} x + \log {\left (\frac {x}{4} + \log {\relax (2 )} + \frac {5}{4} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________