Optimal. Leaf size=28 \[ \frac {\left (-2+\frac {1}{5} e^{\frac {1+x}{x}}\right )^2}{2 (1-3 x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.79, antiderivative size = 48, normalized size of antiderivative = 1.71, number of steps used = 6, number of rules used = 4, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {6688, 12, 6742, 2288} \begin {gather*} -\frac {2 e^{\frac {1}{x}+1}}{5 (1-3 x)^2}+\frac {e^{\frac {2}{x}+2}}{50 (1-3 x)^2}+\frac {2}{(1-3 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (10-e^{1+\frac {1}{x}}\right ) \left (30 x^2-e^{1+\frac {1}{x}} \left (-1+3 x+3 x^2\right )\right )}{25 (1-3 x)^3 x^2} \, dx\\ &=\frac {1}{25} \int \frac {\left (10-e^{1+\frac {1}{x}}\right ) \left (30 x^2-e^{1+\frac {1}{x}} \left (-1+3 x+3 x^2\right )\right )}{(1-3 x)^3 x^2} \, dx\\ &=\frac {1}{25} \int \left (-\frac {300}{(-1+3 x)^3}-\frac {e^{2+\frac {2}{x}} \left (-1+3 x+3 x^2\right )}{x^2 (-1+3 x)^3}+\frac {10 e^{1+\frac {1}{x}} \left (-1+3 x+6 x^2\right )}{x^2 (-1+3 x)^3}\right ) \, dx\\ &=\frac {2}{(1-3 x)^2}-\frac {1}{25} \int \frac {e^{2+\frac {2}{x}} \left (-1+3 x+3 x^2\right )}{x^2 (-1+3 x)^3} \, dx+\frac {2}{5} \int \frac {e^{1+\frac {1}{x}} \left (-1+3 x+6 x^2\right )}{x^2 (-1+3 x)^3} \, dx\\ &=\frac {2}{(1-3 x)^2}-\frac {2 e^{1+\frac {1}{x}}}{5 (1-3 x)^2}+\frac {e^{2+\frac {2}{x}}}{50 (1-3 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 22, normalized size = 0.79 \begin {gather*} \frac {\left (-10+e^{1+\frac {1}{x}}\right )^2}{50 (1-3 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.87, size = 35, normalized size = 1.25 \begin {gather*} \frac {e^{\left (\frac {2 \, {\left (x + 1\right )}}{x}\right )} - 20 \, e^{\left (\frac {x + 1}{x}\right )} + 100}{50 \, {\left (9 \, x^{2} - 6 \, x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 46, normalized size = 1.64 \begin {gather*} -\frac {\frac {600}{x} + \frac {e^{\left (\frac {2}{x} + 2\right )}}{x^{2}} - \frac {20 \, e^{\left (\frac {1}{x} + 1\right )}}{x^{2}} - 900}{50 \, {\left (\frac {6}{x} - \frac {1}{x^{2}} - 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 47, normalized size = 1.68
method | result | size |
norman | \(\frac {-18 x^{3}+12 x^{2}-\frac {2 x \,{\mathrm e}^{\frac {x +1}{x}}}{5}+\frac {{\mathrm e}^{\frac {2 x +2}{x}} x}{50}}{x \left (3 x -1\right )^{2}}\) | \(47\) |
risch | \(\frac {2}{9 \left (x^{2}-\frac {2}{3} x +\frac {1}{9}\right )}+\frac {{\mathrm e}^{\frac {2 x +2}{x}}}{50 \left (3 x -1\right )^{2}}-\frac {2 \,{\mathrm e}^{\frac {x +1}{x}}}{5 \left (3 x -1\right )^{2}}\) | \(49\) |
derivativedivides | \(\frac {{\mathrm e}^{\frac {2}{x}+2}}{50}+\frac {3 \,{\mathrm e}^{\frac {2}{x}+2}}{25 \left (\frac {1}{x}-3\right )}+\frac {9 \,{\mathrm e}^{\frac {2}{x}+2}}{50 \left (\frac {1}{x}-3\right )^{2}}+\frac {12}{\frac {1}{x}-3}+\frac {18}{\left (\frac {1}{x}-3\right )^{2}}-\frac {12 \,{\mathrm e}^{\frac {1}{x}+1}}{5 \left (\frac {1}{x}-3\right )}-\frac {18 \,{\mathrm e}^{\frac {1}{x}+1}}{5 \left (\frac {1}{x}-3\right )^{2}}-\frac {2 \,{\mathrm e}^{\frac {1}{x}+1}}{5}\) | \(102\) |
default | \(\frac {{\mathrm e}^{\frac {2}{x}+2}}{50}+\frac {3 \,{\mathrm e}^{\frac {2}{x}+2}}{25 \left (\frac {1}{x}-3\right )}+\frac {9 \,{\mathrm e}^{\frac {2}{x}+2}}{50 \left (\frac {1}{x}-3\right )^{2}}+\frac {12}{\frac {1}{x}-3}+\frac {18}{\left (\frac {1}{x}-3\right )^{2}}-\frac {12 \,{\mathrm e}^{\frac {1}{x}+1}}{5 \left (\frac {1}{x}-3\right )}-\frac {18 \,{\mathrm e}^{\frac {1}{x}+1}}{5 \left (\frac {1}{x}-3\right )^{2}}-\frac {2 \,{\mathrm e}^{\frac {1}{x}+1}}{5}\) | \(102\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 46, normalized size = 1.64 \begin {gather*} \frac {e^{\left (\frac {2}{x} + 2\right )} - 20 \, e^{\left (\frac {1}{x} + 1\right )}}{50 \, {\left (9 \, x^{2} - 6 \, x + 1\right )}} + \frac {2}{9 \, x^{2} - 6 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.47, size = 28, normalized size = 1.00 \begin {gather*} \frac {\frac {{\mathrm {e}}^{\frac {2}{x}+2}}{50}-\frac {2\,{\mathrm {e}}^{\frac {1}{x}+1}}{5}+2}{{\left (3\,x-1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 66, normalized size = 2.36 \begin {gather*} \frac {\left (- 900 x^{2} + 600 x - 100\right ) e^{\frac {x + 1}{x}} + \left (45 x^{2} - 30 x + 5\right ) e^{\frac {2 \left (x + 1\right )}{x}}}{20250 x^{4} - 27000 x^{3} + 13500 x^{2} - 3000 x + 250} + \frac {12}{54 x^{2} - 36 x + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________