Optimal. Leaf size=28 \[ \log \left (8-\frac {e^x x}{e^{e^x}-x^2+4 \log ^4(x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 100.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^x} \left (e^x (-1-x)+e^{2 x} x\right )+e^x \left (-x^2+x^3\right )+16 e^x \log ^3(x)+e^x (-4-4 x) \log ^4(x)}{8 e^{2 e^x}+e^x x^3+8 x^4+\left (-4 e^x x-64 x^2\right ) \log ^4(x)+128 \log ^8(x)+e^{e^x} \left (-e^x x-16 x^2+64 \log ^4(x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (e^{e^x+x} x+(-1+x) x^2-e^{e^x} (1+x)+16 \log ^3(x)-4 (1+x) \log ^4(x)\right )}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx\\ &=\int \left (-\frac {e^{e^x+x}}{e^{e^x}-x^2+4 \log ^4(x)}+\frac {e^x \left (-e^{e^x}+8 e^{2 e^x}-e^{e^x} x-x^2-8 e^{e^x} x^2+x^3+16 \log ^3(x)-4 \log ^4(x)+32 e^{e^x} \log ^4(x)-4 x \log ^4(x)\right )}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )}\right ) \, dx\\ &=-\int \frac {e^{e^x+x}}{e^{e^x}-x^2+4 \log ^4(x)} \, dx+\int \frac {e^x \left (-e^{e^x}+8 e^{2 e^x}-e^{e^x} x-x^2-8 e^{e^x} x^2+x^3+16 \log ^3(x)-4 \log ^4(x)+32 e^{e^x} \log ^4(x)-4 x \log ^4(x)\right )}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx\\ &=-\int \frac {e^{e^x+x}}{e^{e^x}-x^2+4 \log ^4(x)} \, dx+\int \left (-\frac {e^x x^2}{\left (-8 e^{e^x}+e^x x+8 x^2-32 \log ^4(x)\right ) \left (-e^{e^x}+x^2-4 \log ^4(x)\right )}+\frac {e^x x^3}{\left (-8 e^{e^x}+e^x x+8 x^2-32 \log ^4(x)\right ) \left (-e^{e^x}+x^2-4 \log ^4(x)\right )}-\frac {4 e^x x \log ^4(x)}{\left (-8 e^{e^x}+e^x x+8 x^2-32 \log ^4(x)\right ) \left (-e^{e^x}+x^2-4 \log ^4(x)\right )}-\frac {e^{e^x+x}}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )}+\frac {8 e^{2 e^x+x}}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )}-\frac {e^{e^x+x} x}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )}-\frac {8 e^{e^x+x} x^2}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )}+\frac {16 e^x \log ^3(x)}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )}-\frac {4 e^x \log ^4(x)}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )}+\frac {32 e^{e^x+x} \log ^4(x)}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )}\right ) \, dx\\ &=-\left (4 \int \frac {e^x x \log ^4(x)}{\left (-8 e^{e^x}+e^x x+8 x^2-32 \log ^4(x)\right ) \left (-e^{e^x}+x^2-4 \log ^4(x)\right )} \, dx\right )-4 \int \frac {e^x \log ^4(x)}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx+8 \int \frac {e^{2 e^x+x}}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx-8 \int \frac {e^{e^x+x} x^2}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx+16 \int \frac {e^x \log ^3(x)}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx+32 \int \frac {e^{e^x+x} \log ^4(x)}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx-\int \frac {e^x x^2}{\left (-8 e^{e^x}+e^x x+8 x^2-32 \log ^4(x)\right ) \left (-e^{e^x}+x^2-4 \log ^4(x)\right )} \, dx+\int \frac {e^x x^3}{\left (-8 e^{e^x}+e^x x+8 x^2-32 \log ^4(x)\right ) \left (-e^{e^x}+x^2-4 \log ^4(x)\right )} \, dx-\int \frac {e^{e^x+x}}{e^{e^x}-x^2+4 \log ^4(x)} \, dx-\int \frac {e^{e^x+x}}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx-\int \frac {e^{e^x+x} x}{\left (e^{e^x}-x^2+4 \log ^4(x)\right ) \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 47, normalized size = 1.68 \begin {gather*} -\log \left (e^{e^x}-x^2+4 \log ^4(x)\right )+\log \left (8 e^{e^x}-e^x x-8 x^2+32 \log ^4(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 42, normalized size = 1.50 \begin {gather*} \log \left (32 \, \log \relax (x)^{4} - 8 \, x^{2} - x e^{x} + 8 \, e^{\left (e^{x}\right )}\right ) - \log \left (4 \, \log \relax (x)^{4} - x^{2} + e^{\left (e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.05, size = 42, normalized size = 1.50 \begin {gather*} \log \left (32 \, \log \relax (x)^{4} - 8 \, x^{2} - x e^{x} + 8 \, e^{\left (e^{x}\right )}\right ) - \log \left (-4 \, \log \relax (x)^{4} + x^{2} - e^{\left (e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 41, normalized size = 1.46
method | result | size |
risch | \(\ln \left (4 \ln \relax (x )^{4}-x^{2}-\frac {{\mathrm e}^{x} x}{8}+{\mathrm e}^{{\mathrm e}^{x}}\right )-\ln \left ({\mathrm e}^{{\mathrm e}^{x}}+4 \ln \relax (x )^{4}-x^{2}\right )\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 40, normalized size = 1.43 \begin {gather*} \log \left (4 \, \log \relax (x)^{4} - x^{2} - \frac {1}{8} \, x e^{x} + e^{\left (e^{x}\right )}\right ) - \log \left (4 \, \log \relax (x)^{4} - x^{2} + e^{\left (e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {-{\mathrm {e}}^x\,\left (4\,x+4\right )\,{\ln \relax (x)}^4+16\,{\mathrm {e}}^x\,{\ln \relax (x)}^3+{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (x\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^x\,\left (x+1\right )\right )-{\mathrm {e}}^x\,\left (x^2-x^3\right )}{8\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+x^3\,{\mathrm {e}}^x+128\,{\ln \relax (x)}^8-{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (x\,{\mathrm {e}}^x-64\,{\ln \relax (x)}^4+16\,x^2\right )+8\,x^4-{\ln \relax (x)}^4\,\left (4\,x\,{\mathrm {e}}^x+64\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.25, size = 39, normalized size = 1.39 \begin {gather*} - \log {\left (- x^{2} + e^{e^{x}} + 4 \log {\relax (x )}^{4} \right )} + \log {\left (- x^{2} - \frac {x e^{x}}{8} + e^{e^{x}} + 4 \log {\relax (x )}^{4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________