Optimal. Leaf size=25 \[ 20+2 \left (x+x \left (-5+x^2-\log \left (\frac {10}{x}\right )\right ) \log \left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 33, normalized size of antiderivative = 1.32, number of steps used = 11, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {2295, 6741, 12, 6742, 2304, 2361} \begin {gather*} -2 x \log \left (\frac {10}{x}\right ) \log \left (x^2\right )-10 x \log \left (x^2\right )+2 x^3 \log \left (x^2\right )+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rule 2304
Rule 2361
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-18 x+\frac {4 x^3}{3}-4 \int \log \left (\frac {10}{x}\right ) \, dx+\int \left (-8+6 x^2-2 \log \left (\frac {10}{x}\right )\right ) \log \left (x^2\right ) \, dx\\ &=-22 x+\frac {4 x^3}{3}-4 x \log \left (\frac {10}{x}\right )+\int 2 \left (-4+3 x^2-\log \left (\frac {10}{x}\right )\right ) \log \left (x^2\right ) \, dx\\ &=-22 x+\frac {4 x^3}{3}-4 x \log \left (\frac {10}{x}\right )+2 \int \left (-4+3 x^2-\log \left (\frac {10}{x}\right )\right ) \log \left (x^2\right ) \, dx\\ &=-22 x+\frac {4 x^3}{3}-4 x \log \left (\frac {10}{x}\right )+2 \int \left (-4 \log \left (x^2\right )+3 x^2 \log \left (x^2\right )-\log \left (\frac {10}{x}\right ) \log \left (x^2\right )\right ) \, dx\\ &=-22 x+\frac {4 x^3}{3}-4 x \log \left (\frac {10}{x}\right )-2 \int \log \left (\frac {10}{x}\right ) \log \left (x^2\right ) \, dx+6 \int x^2 \log \left (x^2\right ) \, dx-8 \int \log \left (x^2\right ) \, dx\\ &=-6 x-4 x \log \left (\frac {10}{x}\right )-10 x \log \left (x^2\right )+2 x^3 \log \left (x^2\right )-2 x \log \left (\frac {10}{x}\right ) \log \left (x^2\right )+4 \int \left (1+\log \left (\frac {10}{x}\right )\right ) \, dx\\ &=-2 x-4 x \log \left (\frac {10}{x}\right )-10 x \log \left (x^2\right )+2 x^3 \log \left (x^2\right )-2 x \log \left (\frac {10}{x}\right ) \log \left (x^2\right )+4 \int \log \left (\frac {10}{x}\right ) \, dx\\ &=2 x-10 x \log \left (x^2\right )+2 x^3 \log \left (x^2\right )-2 x \log \left (\frac {10}{x}\right ) \log \left (x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.92 \begin {gather*} 2 \left (x+x \left (-5+x^2-\log \left (\frac {10}{x}\right )\right ) \log \left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 45, normalized size = 1.80 \begin {gather*} 4 \, x \log \left (\frac {10}{x}\right )^{2} + 4 \, {\left (x^{3} - 5 \, x\right )} \log \left (10\right ) - 4 \, {\left (x^{3} + x \log \left (10\right ) - 5 \, x\right )} \log \left (\frac {10}{x}\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 42, normalized size = 1.68 \begin {gather*} 4 \, x \log \relax (x)^{2} + 4 \, x {\left (\log \left (10\right ) + 6\right )} + 4 \, {\left (x^{3} - x {\left (\log \left (10\right ) + 6\right )}\right )} \log \relax (x) - 4 \, x \log \left (\frac {10}{x}\right ) - 22 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 34, normalized size = 1.36
method | result | size |
norman | \(2 x -10 x \ln \left (x^{2}\right )+2 x^{3} \ln \left (x^{2}\right )-2 x \ln \left (x^{2}\right ) \ln \left (\frac {10}{x}\right )\) | \(34\) |
default | \(2 x +2 x^{3} \ln \left (x^{2}\right )-2 \ln \left (x^{2}\right ) \ln \left (10\right ) x +4 \ln \left (10\right ) x +4 x \ln \left (\frac {1}{x}\right )-10 x \ln \left (x^{2}\right )-2 \ln \left (x^{2}\right ) \ln \left (\frac {1}{x}\right ) x -4 \ln \left (\frac {10}{x}\right ) x\) | \(62\) |
risch | \(4 x \ln \relax (x )^{2}+\left (-i x \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i x \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 x^{3}-4 x \ln \relax (5)-4 x \ln \relax (2)-24 x \right ) \ln \relax (x )-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) x^{3}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} x^{3}+i \pi \ln \relax (5) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) x -2 i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} x -10 i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+5 i x \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) x +2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} x^{3}+i \pi \ln \relax (5) \mathrm {csgn}\left (i x^{2}\right )^{3} x +5 i x \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi \ln \relax (5) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} x +i \pi \ln \relax (2) \mathrm {csgn}\left (i x^{2}\right )^{3} x +4 x \ln \relax (5)+4 x \ln \relax (2)+2 x -4 \ln \left (\frac {10}{x}\right ) x\) | \(331\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 49, normalized size = 1.96 \begin {gather*} 4 \, x {\left (\log \relax (5) + \log \relax (2) + 6\right )} + 2 \, {\left (x^{3} - x \log \left (\frac {10}{x}\right ) - 5 \, x\right )} \log \left (x^{2}\right ) - 4 \, x \log \relax (x) - 4 \, x \log \left (\frac {10}{x}\right ) - 22 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.74, size = 63, normalized size = 2.52 \begin {gather*} 6\,x+4\,x\,\ln \left (\frac {1}{x}\right )-10\,x\,\ln \left (x^2\right )+4\,x\,\ln \left (10\right )+2\,x^3\,\ln \left (x^2\right )-4\,x\,\left (\ln \left (\frac {10}{x}\right )+1\right )-2\,x\,\ln \left (\frac {1}{x}\right )\,\ln \left (x^2\right )-2\,x\,\ln \left (x^2\right )\,\ln \left (10\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 31, normalized size = 1.24 \begin {gather*} x \log {\left (x^{2} \right )}^{2} + 2 x + \left (2 x^{3} - 10 x - 2 x \log {\left (10 \right )}\right ) \log {\left (x^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________