Optimal. Leaf size=17 \[ -5+e^{-2+x^2}-\frac {1}{x}+3 x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 5, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {14, 2209} \begin {gather*} e^{x^2-2}+3 x-\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^{-2+x^2} x+\frac {1+3 x^2}{x^2}\right ) \, dx\\ &=2 \int e^{-2+x^2} x \, dx+\int \frac {1+3 x^2}{x^2} \, dx\\ &=e^{-2+x^2}+\int \left (3+\frac {1}{x^2}\right ) \, dx\\ &=e^{-2+x^2}-\frac {1}{x}+3 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.94 \begin {gather*} e^{-2+x^2}-\frac {1}{x}+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 19, normalized size = 1.12 \begin {gather*} \frac {3 \, x^{2} + x e^{\left (x^{2} - 2\right )} - 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 24, normalized size = 1.41 \begin {gather*} \frac {{\left (3 \, x^{2} e^{2} + x e^{\left (x^{2}\right )} - e^{2}\right )} e^{\left (-2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.94
method | result | size |
risch | \(3 x -\frac {1}{x}+{\mathrm e}^{x^{2}-2}\) | \(16\) |
default | \(3 x -\frac {1}{x}+{\mathrm e}^{x^{2}} {\mathrm e}^{-2}\) | \(17\) |
norman | \(\frac {-1+x \,{\mathrm e}^{x^{2}-2}+3 x^{2}}{x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 15, normalized size = 0.88 \begin {gather*} 3 \, x - \frac {1}{x} + e^{\left (x^{2} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.61, size = 15, normalized size = 0.88 \begin {gather*} 3\,x+{\mathrm {e}}^{x^2-2}-\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.71 \begin {gather*} 3 x + e^{x^{2} - 2} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________