Optimal. Leaf size=28 \[ \log \left (2+\frac {5 e^x}{3}+x+e^{5+x} \log \left (x+\frac {e^x}{\log (2)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 68.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 e^{2 x}+3 x \log (2)+e^{5+x} \left (3 e^x+3 \log (2)\right )+e^x (3+5 x \log (2))+e^{5+x} \left (3 e^x+3 x \log (2)\right ) \log \left (\frac {e^x+x \log (2)}{\log (2)}\right )}{5 e^{2 x}+\left (6 x+3 x^2\right ) \log (2)+e^x (6+3 x+5 x \log (2))+e^{5+x} \left (3 e^x+3 x \log (2)\right ) \log \left (\frac {e^x+x \log (2)}{\log (2)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^{2 x}+3 x \log (2)+e^{5+x} \left (3 e^x+3 \log (2)\right )+e^x (3+5 x \log (2))+e^{5+x} \left (3 e^x+3 x \log (2)\right ) \log \left (\frac {e^x+x \log (2)}{\log (2)}\right )}{\left (e^x+x \log (2)\right ) \left (6+5 e^x+3 x+3 e^{5+x} \log \left (x+\frac {e^x}{\log (2)}\right )\right )} \, dx\\ &=\int \left (\frac {5 \left (1+\frac {3 e^5}{5}\right )+3 e^5 \log \left (x+\frac {e^x}{\log (2)}\right )}{5+3 e^5 \log \left (x+\frac {e^x}{\log (2)}\right )}+\frac {3 e^5 (-1+x) x \log ^2(2)}{\left (e^x+x \log (2)\right ) \left (6+3 x \left (1-\frac {\log (32)}{3}\right )-3 e^5 x \log (2) \log \left (x+\frac {e^x}{\log (2)}\right )\right )}+\frac {3 \left (-15 x^2 \left (1+\frac {3 e^5}{5}-\frac {5 \log (2)}{3}\right )-30 \left (1-\frac {1}{5} e^5 (-6+\log (32))\right )-45 x \left (1+\frac {4}{5} e^5 \left (1-\frac {5}{12} \log (2) \left (1+\frac {\log (32)}{e^5 \log (8)}\right )\right )\right )-18 e^5 \left (1-e^5 \log (2)\right ) \log \left (x+\frac {e^x}{\log (2)}\right )-27 e^5 x \left (1+\frac {1}{9} \left (-e^5 \log (8)-\log (1024)\right )\right ) \log \left (x+\frac {e^x}{\log (2)}\right )-9 e^5 x^2 \left (1-\frac {\log (1024)}{3}\right ) \log \left (x+\frac {e^x}{\log (2)}\right )+9 e^{10} x \log (2) \log ^2\left (x+\frac {e^x}{\log (2)}\right )+9 e^{10} x^2 \log (2) \log ^2\left (x+\frac {e^x}{\log (2)}\right )\right )}{\left (5+3 e^5 \log \left (x+\frac {e^x}{\log (2)}\right )\right ) \left (6+5 e^x+3 x+3 e^{5+x} \log \left (x+\frac {e^x}{\log (2)}\right )\right ) \left (6+3 x \left (1-\frac {\log (32)}{3}\right )-3 e^5 x \log (2) \log \left (x+\frac {e^x}{\log (2)}\right )\right )}\right ) \, dx\\ &=3 \int \frac {-15 x^2 \left (1+\frac {3 e^5}{5}-\frac {5 \log (2)}{3}\right )-30 \left (1-\frac {1}{5} e^5 (-6+\log (32))\right )-45 x \left (1+\frac {4}{5} e^5 \left (1-\frac {5}{12} \log (2) \left (1+\frac {\log (32)}{e^5 \log (8)}\right )\right )\right )-18 e^5 \left (1-e^5 \log (2)\right ) \log \left (x+\frac {e^x}{\log (2)}\right )-27 e^5 x \left (1+\frac {1}{9} \left (-e^5 \log (8)-\log (1024)\right )\right ) \log \left (x+\frac {e^x}{\log (2)}\right )-9 e^5 x^2 \left (1-\frac {\log (1024)}{3}\right ) \log \left (x+\frac {e^x}{\log (2)}\right )+9 e^{10} x \log (2) \log ^2\left (x+\frac {e^x}{\log (2)}\right )+9 e^{10} x^2 \log (2) \log ^2\left (x+\frac {e^x}{\log (2)}\right )}{\left (5+3 e^5 \log \left (x+\frac {e^x}{\log (2)}\right )\right ) \left (6+5 e^x+3 x+3 e^{5+x} \log \left (x+\frac {e^x}{\log (2)}\right )\right ) \left (6+3 x \left (1-\frac {\log (32)}{3}\right )-3 e^5 x \log (2) \log \left (x+\frac {e^x}{\log (2)}\right )\right )} \, dx+\left (3 e^5 \log ^2(2)\right ) \int \frac {(-1+x) x}{\left (e^x+x \log (2)\right ) \left (6+3 x \left (1-\frac {\log (32)}{3}\right )-3 e^5 x \log (2) \log \left (x+\frac {e^x}{\log (2)}\right )\right )} \, dx+\int \frac {5 \left (1+\frac {3 e^5}{5}\right )+3 e^5 \log \left (x+\frac {e^x}{\log (2)}\right )}{5+3 e^5 \log \left (x+\frac {e^x}{\log (2)}\right )} \, dx\\ &=3 \int \frac {5 (1+x) (-6+x (-3+\log (32)))-3 e^5 \left (12+12 x+3 x^2-5 x \log (2)-2 \log (32)\right )+3 e^5 \left (-6+e^5 \log (64)+x^2 (-3+\log (1024))+x \left (-9+e^5 \log (8)+\log (1024)\right )\right ) \log \left (x+\frac {e^x}{\log (2)}\right )+9 e^{10} x (1+x) \log (2) \log ^2\left (x+\frac {e^x}{\log (2)}\right )}{\left (5+3 e^5 \log \left (x+\frac {e^x}{\log (2)}\right )\right ) \left (6+5 e^x+3 x+3 e^{5+x} \log \left (x+\frac {e^x}{\log (2)}\right )\right ) \left (6-x (-3+\log (32))-3 e^5 x \log (2) \log \left (x+\frac {e^x}{\log (2)}\right )\right )} \, dx+\left (3 e^5 \log ^2(2)\right ) \int \left (\frac {x}{\left (-e^x-x \log (2)\right ) \left (6+3 x \left (1-\frac {\log (32)}{3}\right )-3 e^5 x \log (2) \log \left (x+\frac {e^x}{\log (2)}\right )\right )}+\frac {x^2}{\left (e^x+x \log (2)\right ) \left (6+3 x \left (1-\frac {\log (32)}{3}\right )-3 e^5 x \log (2) \log \left (x+\frac {e^x}{\log (2)}\right )\right )}\right ) \, dx+\int \left (1+\frac {3 e^5}{5+3 e^5 \log \left (x+\frac {e^x}{\log (2)}\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.46, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 e^{2 x}+3 x \log (2)+e^{5+x} \left (3 e^x+3 \log (2)\right )+e^x (3+5 x \log (2))+e^{5+x} \left (3 e^x+3 x \log (2)\right ) \log \left (\frac {e^x+x \log (2)}{\log (2)}\right )}{5 e^{2 x}+\left (6 x+3 x^2\right ) \log (2)+e^x (6+3 x+5 x \log (2))+e^{5+x} \left (3 e^x+3 x \log (2)\right ) \log \left (\frac {e^x+x \log (2)}{\log (2)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.99, size = 49, normalized size = 1.75 \begin {gather*} x + \log \left ({\left (3 \, {\left (x + 2\right )} e^{5} + 3 \, e^{\left (x + 10\right )} \log \left (\frac {{\left (x e^{5} \log \relax (2) + e^{\left (x + 5\right )}\right )} e^{\left (-5\right )}}{\log \relax (2)}\right ) + 5 \, e^{\left (x + 5\right )}\right )} e^{\left (-x - 5\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 33, normalized size = 1.18 \begin {gather*} \log \left (3 \, e^{\left (x + 5\right )} \log \left (x \log \relax (2) + e^{x}\right ) - 3 \, e^{\left (x + 5\right )} \log \left (\log \relax (2)\right ) + 3 \, x + 5 \, e^{x} + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 30, normalized size = 1.07
method | result | size |
norman | \(\ln \left (3 \,{\mathrm e}^{5} {\mathrm e}^{x} \ln \left (\frac {{\mathrm e}^{x}+x \ln \relax (2)}{\ln \relax (2)}\right )+3 x +5 \,{\mathrm e}^{x}+6\right )\) | \(30\) |
risch | \(x +\ln \left (\ln \left (\frac {{\mathrm e}^{x}+x \ln \relax (2)}{\ln \relax (2)}\right )+\frac {\left (3 x +5 \,{\mathrm e}^{x}+6\right ) {\mathrm e}^{-x -5}}{3}\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 42, normalized size = 1.50 \begin {gather*} x + \log \left (-\frac {1}{3} \, {\left ({\left (3 \, e^{5} \log \left (\log \relax (2)\right ) - 5\right )} e^{x} - 3 \, e^{\left (x + 5\right )} \log \left (x \log \relax (2) + e^{x}\right ) - 3 \, x - 6\right )} e^{\left (-x - 5\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {5\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{x+5}\,\left (3\,\ln \relax (2)+3\,{\mathrm {e}}^x\right )+3\,x\,\ln \relax (2)+{\mathrm {e}}^x\,\left (5\,x\,\ln \relax (2)+3\right )+\ln \left (\frac {{\mathrm {e}}^x+x\,\ln \relax (2)}{\ln \relax (2)}\right )\,{\mathrm {e}}^{x+5}\,\left (3\,{\mathrm {e}}^x+3\,x\,\ln \relax (2)\right )}{5\,{\mathrm {e}}^{2\,x}+\ln \relax (2)\,\left (3\,x^2+6\,x\right )+{\mathrm {e}}^x\,\left (3\,x+5\,x\,\ln \relax (2)+6\right )+\ln \left (\frac {{\mathrm {e}}^x+x\,\ln \relax (2)}{\ln \relax (2)}\right )\,{\mathrm {e}}^{x+5}\,\left (3\,{\mathrm {e}}^x+3\,x\,\ln \relax (2)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 34, normalized size = 1.21 \begin {gather*} x + \log {\left (\frac {\left (3 x + 5 e^{x} + 6\right ) e^{- x}}{3 e^{5}} + \log {\left (\frac {x \log {\relax (2 )} + e^{x}}{\log {\relax (2 )}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________