Optimal. Leaf size=24 \[ 4+e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x}+x \]
________________________________________________________________________________________
Rubi [F] time = 4.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x x+5 x \log \left (x^2\right )+e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x} \left (e^x x+5 x \log \left (x^2\right )+e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )} \left (-40-4 e^x x\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )\right )}{e^x x+5 x \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}} \left (e^{e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}}+e^x\right )-\frac {4 \exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \left (10+e^x x\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )}{x \left (e^x+5 \log \left (x^2\right )\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \left (10+e^x x\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )}{x \left (e^x+5 \log \left (x^2\right )\right )} \, dx\right )+\int e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}} \left (e^{e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}}+e^x\right ) \, dx\\ &=-\left (4 \int \left (\exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )-\frac {5 \exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \left (-2+x \log \left (x^2\right )\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )}{x \left (e^x+5 \log \left (x^2\right )\right )}\right ) \, dx\right )+\int \left (1+e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x}\right ) \, dx\\ &=x-4 \int \exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right ) \, dx+20 \int \frac {\exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \left (-2+x \log \left (x^2\right )\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )}{x \left (e^x+5 \log \left (x^2\right )\right )} \, dx+\int e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x} \, dx\\ &=x-4 \int \exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right ) \, dx+20 \int \left (-\frac {2 \exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )}{x \left (e^x+5 \log \left (x^2\right )\right )}+\frac {\exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \log \left (x^2\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )}{e^x+5 \log \left (x^2\right )}\right ) \, dx+\int e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x} \, dx\\ &=x-4 \int \exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right ) \, dx+20 \int \frac {\exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \log \left (x^2\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )}{e^x+5 \log \left (x^2\right )} \, dx-40 \int \frac {\exp \left (-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x+\log ^4\left (e^x+5 \log \left (x^2\right )\right )\right ) \log ^3\left (e^x+5 \log \left (x^2\right )\right )}{x \left (e^x+5 \log \left (x^2\right )\right )} \, dx+\int e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 23, normalized size = 0.96 \begin {gather*} e^{-e^{\log ^4\left (e^x+5 \log \left (x^2\right )\right )}+x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.91, size = 20, normalized size = 0.83 \begin {gather*} x + e^{\left (x - e^{\left (\log \left (e^{x} + 5 \, \log \left (x^{2}\right )\right )^{4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (4 \, {\left (x e^{x} + 10\right )} e^{\left (\log \left (e^{x} + 5 \, \log \left (x^{2}\right )\right )^{4}\right )} \log \left (e^{x} + 5 \, \log \left (x^{2}\right )\right )^{3} - x e^{x} - 5 \, x \log \left (x^{2}\right )\right )} e^{\left (x - e^{\left (\log \left (e^{x} + 5 \, \log \left (x^{2}\right )\right )^{4}\right )}\right )} - x e^{x} - 5 \, x \log \left (x^{2}\right )}{x e^{x} + 5 \, x \log \left (x^{2}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.21, size = 48, normalized size = 2.00
method | result | size |
risch | \(x +{\mathrm e}^{x} {\mathrm e}^{-{\mathrm e}^{\ln \left (10 \ln \relax (x )-\frac {5 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}+{\mathrm e}^{x}\right )^{4}}}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 18, normalized size = 0.75 \begin {gather*} x + e^{\left (x - e^{\left (\log \left (e^{x} + 10 \, \log \relax (x)\right )^{4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.74, size = 19, normalized size = 0.79 \begin {gather*} x+{\mathrm {e}}^{-{\mathrm {e}}^{{\ln \left (\ln \left (x^{10}\right )+{\mathrm {e}}^x\right )}^4}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________