Optimal. Leaf size=21 \[ -\frac {2}{5}-x+\frac {3}{-64+\frac {2}{e^{24}}+x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 28, normalized size of antiderivative = 1.33, number of steps used = 5, number of rules used = 5, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {1994, 28, 1814, 21, 8} \begin {gather*} \frac {3 e^{24}}{e^{24} x^2+2 \left (1-32 e^{24}\right )}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 21
Rule 28
Rule 1814
Rule 1994
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+e^{24} \left (256-4 x^2\right )+e^{48} \left (-4096-6 x+128 x^2-x^4\right )}{4 \left (1-32 e^{24}\right )^2+4 e^{24} \left (1-32 e^{24}\right ) x^2+e^{48} x^4} \, dx\\ &=e^{48} \int \frac {-4+e^{24} \left (256-4 x^2\right )+e^{48} \left (-4096-6 x+128 x^2-x^4\right )}{\left (2 e^{24} \left (1-32 e^{24}\right )+e^{48} x^2\right )^2} \, dx\\ &=\frac {3 e^{24}}{2 \left (1-32 e^{24}\right )+e^{24} x^2}-\frac {e^{24} \int \frac {8 \left (1-32 e^{24}\right )^2+4 e^{24} \left (1-32 e^{24}\right ) x^2}{2 e^{24} \left (1-32 e^{24}\right )+e^{48} x^2} \, dx}{4 \left (1-32 e^{24}\right )}\\ &=\frac {3 e^{24}}{2 \left (1-32 e^{24}\right )+e^{24} x^2}-\int 1 \, dx\\ &=-x+\frac {3 e^{24}}{2 \left (1-32 e^{24}\right )+e^{24} x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 1.05 \begin {gather*} -x+\frac {3 e^{24}}{2+e^{24} \left (-64+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 29, normalized size = 1.38 \begin {gather*} -\frac {{\left (x^{3} - 64 \, x - 3\right )} e^{24} + 2 \, x}{{\left (x^{2} - 64\right )} e^{24} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 23, normalized size = 1.10
method | result | size |
risch | \(-x +\frac {3 \,{\mathrm e}^{24}}{{\mathrm e}^{24} x^{2}-64 \,{\mathrm e}^{24}+2}\) | \(23\) |
gosper | \(-\frac {{\mathrm e}^{24} x^{3}-64 x \,{\mathrm e}^{24}-3 \,{\mathrm e}^{24}+2 x}{{\mathrm e}^{24} x^{2}-64 \,{\mathrm e}^{24}+2}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 22, normalized size = 1.05 \begin {gather*} -x + \frac {3 \, e^{24}}{x^{2} e^{24} - 64 \, e^{24} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.54, size = 22, normalized size = 1.05 \begin {gather*} \frac {3\,{\mathrm {e}}^{24}}{{\mathrm {e}}^{24}\,x^2-64\,{\mathrm {e}}^{24}+2}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 19, normalized size = 0.90 \begin {gather*} - x + \frac {3 e^{24}}{x^{2} e^{24} - 64 e^{24} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________