Optimal. Leaf size=28 \[ 1-\frac {1}{20} e^{\frac {1}{2} \left (\frac {1}{5}-e^{-\frac {1}{x}+x} x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{10} \left (1-5 e^{\frac {-1+x^2}{x}} x\right )+\frac {-1+x^2}{x}} \left (1+x+x^2\right )}{40 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{40} \int \frac {e^{\frac {1}{10} \left (1-5 e^{\frac {-1+x^2}{x}} x\right )+\frac {-1+x^2}{x}} \left (1+x+x^2\right )}{x} \, dx\\ &=\frac {1}{40} \int \left (e^{\frac {1}{10} \left (1-5 e^{\frac {-1+x^2}{x}} x\right )+\frac {-1+x^2}{x}}+\frac {e^{\frac {1}{10} \left (1-5 e^{\frac {-1+x^2}{x}} x\right )+\frac {-1+x^2}{x}}}{x}+e^{\frac {1}{10} \left (1-5 e^{\frac {-1+x^2}{x}} x\right )+\frac {-1+x^2}{x}} x\right ) \, dx\\ &=\frac {1}{40} \int e^{\frac {1}{10} \left (1-5 e^{\frac {-1+x^2}{x}} x\right )+\frac {-1+x^2}{x}} \, dx+\frac {1}{40} \int \frac {e^{\frac {1}{10} \left (1-5 e^{\frac {-1+x^2}{x}} x\right )+\frac {-1+x^2}{x}}}{x} \, dx+\frac {1}{40} \int e^{\frac {1}{10} \left (1-5 e^{\frac {-1+x^2}{x}} x\right )+\frac {-1+x^2}{x}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 24, normalized size = 0.86 \begin {gather*} -\frac {1}{20} e^{\frac {1}{10}-\frac {1}{2} e^{-\frac {1}{x}+x} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 44, normalized size = 1.57 \begin {gather*} -\frac {1}{20} \, e^{\left (-\frac {5 \, x^{2} e^{\left (\frac {x^{2} - 1}{x}\right )} - 10 \, x^{2} - x + 10}{10 \, x} - \frac {x^{2} - 1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} + x + 1\right )} e^{\left (-\frac {1}{2} \, x e^{\left (\frac {x^{2} - 1}{x}\right )} + \frac {x^{2} - 1}{x} + \frac {1}{10}\right )}}{40 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 19, normalized size = 0.68
method | result | size |
norman | \(-\frac {{\mathrm e}^{-\frac {x \,{\mathrm e}^{\frac {x^{2}-1}{x}}}{2}+\frac {1}{10}}}{20}\) | \(19\) |
risch | \(-\frac {{\mathrm e}^{-\frac {x \,{\mathrm e}^{\frac {\left (x -1\right ) \left (x +1\right )}{x}}}{2}+\frac {1}{10}}}{20}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 16, normalized size = 0.57 \begin {gather*} -\frac {1}{20} \, e^{\left (-\frac {1}{2} \, x e^{\left (x - \frac {1}{x}\right )} + \frac {1}{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.59, size = 16, normalized size = 0.57 \begin {gather*} -\frac {{\mathrm {e}}^{1/10}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{-\frac {1}{x}}\,{\mathrm {e}}^x}{2}}}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 19, normalized size = 0.68 \begin {gather*} - \frac {e^{- \frac {x e^{\frac {x^{2} - 1}{x}}}{2} + \frac {1}{10}}}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________