Optimal. Leaf size=31 \[ 2+x \left (e^3-\log \left (\left (1+x-\frac {2 e^{x^2}}{\log \left (x^2\right )}\right )^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 10.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 e^{3+x^2}+e^{x^2} \left (-2 e^6+16 e^3 x^2\right ) \log \left (x^2\right )+\left (-4 e^3 x+e^6 (1+x)\right ) \log ^2\left (x^2\right )+\left (16 e^{x^2}+e^{x^2} \left (4 e^3-16 x^2\right ) \log \left (x^2\right )+\left (e^3 (-2-2 x)+4 x\right ) \log ^2\left (x^2\right )\right ) \log \left (\frac {4 e^{2 x^2}+e^{x^2} (-4-4 x) \log \left (x^2\right )+\left (1+2 x+x^2\right ) \log ^2\left (x^2\right )}{\log ^2\left (x^2\right )}\right )+\left (-2 e^{x^2} \log \left (x^2\right )+(1+x) \log ^2\left (x^2\right )\right ) \log ^2\left (\frac {4 e^{2 x^2}+e^{x^2} (-4-4 x) \log \left (x^2\right )+\left (1+2 x+x^2\right ) \log ^2\left (x^2\right )}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2} \log \left (x^2\right )+(1+x) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (e^3-\log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right ) \left (16 e^{x^2}+2 e^{x^2} \log \left (x^2\right ) \left (e^3-8 x^2-\log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right )-\log ^2\left (x^2\right ) \left (-4 x+e^3 (1+x)-(1+x) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right )\right )}{\log \left (x^2\right ) \left (2 e^{x^2}-(1+x) \log \left (x^2\right )\right )} \, dx\\ &=\int \left (-\frac {4 \left (-2-2 x-x \log \left (x^2\right )+2 x^2 \log \left (x^2\right )+2 x^3 \log \left (x^2\right )\right ) \left (e^3-\log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right )}{2 e^{x^2}-\log \left (x^2\right )-x \log \left (x^2\right )}+\frac {\left (e^3-\log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right ) \left (8+e^3 \log \left (x^2\right )-8 x^2 \log \left (x^2\right )-\log \left (x^2\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right )}{\log \left (x^2\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\left (-2-2 x-x \log \left (x^2\right )+2 x^2 \log \left (x^2\right )+2 x^3 \log \left (x^2\right )\right ) \left (e^3-\log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right )}{2 e^{x^2}-\log \left (x^2\right )-x \log \left (x^2\right )} \, dx\right )+\int \frac {\left (e^3-\log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right ) \left (8+e^3 \log \left (x^2\right )-8 x^2 \log \left (x^2\right )-\log \left (x^2\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right )}{\log \left (x^2\right )} \, dx\\ &=-\left (4 \int \left (-\frac {2 e^3}{2 e^{x^2}-\log \left (x^2\right )-x \log \left (x^2\right )}+\frac {2 e^3 x}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )}+\frac {e^3 x \log \left (x^2\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )}-\frac {2 e^3 x^2 \log \left (x^2\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )}-\frac {2 e^3 x^3 \log \left (x^2\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )}+\frac {2 \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{2 e^{x^2}-\log \left (x^2\right )-x \log \left (x^2\right )}-\frac {2 x \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )}-\frac {x \log \left (x^2\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )}+\frac {2 x^2 \log \left (x^2\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )}+\frac {2 x^3 \log \left (x^2\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )}\right ) \, dx\right )+\int \left (\frac {e^3 \left (8+e^3 \log \left (x^2\right )-8 x^2 \log \left (x^2\right )\right )}{\log \left (x^2\right )}-\frac {2 \left (4+e^3 \log \left (x^2\right )-4 x^2 \log \left (x^2\right )\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{\log \left (x^2\right )}+\log ^2\left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )\right ) \, dx\\ &=-\left (2 \int \frac {\left (4+e^3 \log \left (x^2\right )-4 x^2 \log \left (x^2\right )\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{\log \left (x^2\right )} \, dx\right )+4 \int \frac {x \log \left (x^2\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )} \, dx-8 \int \frac {\log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{2 e^{x^2}-\log \left (x^2\right )-x \log \left (x^2\right )} \, dx+8 \int \frac {x \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )} \, dx-8 \int \frac {x^2 \log \left (x^2\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )} \, dx-8 \int \frac {x^3 \log \left (x^2\right ) \log \left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )} \, dx+e^3 \int \frac {8+e^3 \log \left (x^2\right )-8 x^2 \log \left (x^2\right )}{\log \left (x^2\right )} \, dx-\left (4 e^3\right ) \int \frac {x \log \left (x^2\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )} \, dx+\left (8 e^3\right ) \int \frac {1}{2 e^{x^2}-\log \left (x^2\right )-x \log \left (x^2\right )} \, dx-\left (8 e^3\right ) \int \frac {x}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )} \, dx+\left (8 e^3\right ) \int \frac {x^2 \log \left (x^2\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )} \, dx+\left (8 e^3\right ) \int \frac {x^3 \log \left (x^2\right )}{-2 e^{x^2}+\log \left (x^2\right )+x \log \left (x^2\right )} \, dx+\int \log ^2\left (\frac {\left (-2 e^{x^2}+(1+x) \log \left (x^2\right )\right )^2}{\log ^2\left (x^2\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.72, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-16 e^{3+x^2}+e^{x^2} \left (-2 e^6+16 e^3 x^2\right ) \log \left (x^2\right )+\left (-4 e^3 x+e^6 (1+x)\right ) \log ^2\left (x^2\right )+\left (16 e^{x^2}+e^{x^2} \left (4 e^3-16 x^2\right ) \log \left (x^2\right )+\left (e^3 (-2-2 x)+4 x\right ) \log ^2\left (x^2\right )\right ) \log \left (\frac {4 e^{2 x^2}+e^{x^2} (-4-4 x) \log \left (x^2\right )+\left (1+2 x+x^2\right ) \log ^2\left (x^2\right )}{\log ^2\left (x^2\right )}\right )+\left (-2 e^{x^2} \log \left (x^2\right )+(1+x) \log ^2\left (x^2\right )\right ) \log ^2\left (\frac {4 e^{2 x^2}+e^{x^2} (-4-4 x) \log \left (x^2\right )+\left (1+2 x+x^2\right ) \log ^2\left (x^2\right )}{\log ^2\left (x^2\right )}\right )}{-2 e^{x^2} \log \left (x^2\right )+(1+x) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 120, normalized size = 3.87 \begin {gather*} -2 \, x e^{3} \log \left (\frac {{\left ({\left (x^{2} + 2 \, x + 1\right )} e^{6} \log \left (x^{2}\right )^{2} - 4 \, {\left (x + 1\right )} e^{\left (x^{2} + 6\right )} \log \left (x^{2}\right ) + 4 \, e^{\left (2 \, x^{2} + 6\right )}\right )} e^{\left (-6\right )}}{\log \left (x^{2}\right )^{2}}\right ) + x \log \left (\frac {{\left ({\left (x^{2} + 2 \, x + 1\right )} e^{6} \log \left (x^{2}\right )^{2} - 4 \, {\left (x + 1\right )} e^{\left (x^{2} + 6\right )} \log \left (x^{2}\right ) + 4 \, e^{\left (2 \, x^{2} + 6\right )}\right )} e^{\left (-6\right )}}{\log \left (x^{2}\right )^{2}}\right )^{2} + x e^{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 30.32, size = 215, normalized size = 6.94 \begin {gather*} -2 \, x e^{3} \log \left (x^{2} \log \left (x^{2}\right )^{2} - 4 \, x e^{\left (x^{2}\right )} \log \left (x^{2}\right ) + 2 \, x \log \left (x^{2}\right )^{2} - 4 \, e^{\left (x^{2}\right )} \log \left (x^{2}\right ) + \log \left (x^{2}\right )^{2} + 4 \, e^{\left (2 \, x^{2}\right )}\right ) + x \log \left (x^{2} \log \left (x^{2}\right )^{2} - 4 \, x e^{\left (x^{2}\right )} \log \left (x^{2}\right ) + 2 \, x \log \left (x^{2}\right )^{2} - 4 \, e^{\left (x^{2}\right )} \log \left (x^{2}\right ) + \log \left (x^{2}\right )^{2} + 4 \, e^{\left (2 \, x^{2}\right )}\right )^{2} + 2 \, x e^{3} \log \left (\log \left (x^{2}\right )^{2}\right ) - 2 \, x \log \left (x^{2} \log \left (x^{2}\right )^{2} - 4 \, x e^{\left (x^{2}\right )} \log \left (x^{2}\right ) + 2 \, x \log \left (x^{2}\right )^{2} - 4 \, e^{\left (x^{2}\right )} \log \left (x^{2}\right ) + \log \left (x^{2}\right )^{2} + 4 \, e^{\left (2 \, x^{2}\right )}\right ) \log \left (\log \left (x^{2}\right )^{2}\right ) + x \log \left (\log \left (x^{2}\right )^{2}\right )^{2} + x e^{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 2.70, size = 22674, normalized size = 731.42
method | result | size |
risch | \(\text {Expression too large to display}\) | \(22674\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 65, normalized size = 2.10 \begin {gather*} 4 \, x \log \left (-{\left (x + 1\right )} \log \relax (x) + e^{\left (x^{2}\right )}\right )^{2} + 4 \, x e^{3} \log \left (\log \relax (x)\right ) + 4 \, x \log \left (\log \relax (x)\right )^{2} + x e^{6} - 4 \, {\left (x e^{3} + 2 \, x \log \left (\log \relax (x)\right )\right )} \log \left (-{\left (x + 1\right )} \log \relax (x) + e^{\left (x^{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.16, size = 56, normalized size = 1.81 \begin {gather*} x\,{\left ({\mathrm {e}}^3-\ln \left (\frac {\left (x^2+2\,x+1\right )\,{\ln \left (x^2\right )}^2-{\mathrm {e}}^{x^2}\,\left (4\,x+4\right )\,\ln \left (x^2\right )+4\,{\mathrm {e}}^{2\,x^2}}{{\ln \left (x^2\right )}^2}\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.56, size = 112, normalized size = 3.61 \begin {gather*} x \log {\left (\frac {\left (- 4 x - 4\right ) e^{x^{2}} \log {\left (x^{2} \right )} + \left (x^{2} + 2 x + 1\right ) \log {\left (x^{2} \right )}^{2} + 4 e^{2 x^{2}}}{\log {\left (x^{2} \right )}^{2}} \right )}^{2} - 2 x e^{3} \log {\left (\frac {\left (- 4 x - 4\right ) e^{x^{2}} \log {\left (x^{2} \right )} + \left (x^{2} + 2 x + 1\right ) \log {\left (x^{2} \right )}^{2} + 4 e^{2 x^{2}}}{\log {\left (x^{2} \right )}^{2}} \right )} + x e^{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________