Optimal. Leaf size=26 \[ \frac {2-x}{x \log \left (e^4+e^x-x-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2-x+x^2+e^x \left (2 x-x^2\right )+\left (2 e^4+2 e^x-2 x-2 \log (x)\right ) \log \left (e^4+e^x-x-\log (x)\right )}{\left (-e^4 x^2-e^x x^2+x^3+x^2 \log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(2-x) \left (1+\left (1+e^4\right ) x-x^2-x \log (x)\right )}{x^2 \left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}+\frac {-2 x+x^2-2 \log \left (e^4+e^x-x-\log (x)\right )}{x^2 \log ^2\left (e^4+e^x-x-\log (x)\right )}\right ) \, dx\\ &=\int \frac {(2-x) \left (1+\left (1+e^4\right ) x-x^2-x \log (x)\right )}{x^2 \left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx+\int \frac {-2 x+x^2-2 \log \left (e^4+e^x-x-\log (x)\right )}{x^2 \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx\\ &=\int \left (\frac {2 \left (1+\left (1+e^4\right ) x-x^2-x \log (x)\right )}{x^2 \left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}+\frac {-1-\left (1+e^4\right ) x+x^2+x \log (x)}{x \left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}\right ) \, dx+\int \left (\frac {-2+x}{x \log ^2\left (e^4+e^x-x-\log (x)\right )}-\frac {2}{x^2 \log \left (e^4+e^x-x-\log (x)\right )}\right ) \, dx\\ &=2 \int \frac {1+\left (1+e^4\right ) x-x^2-x \log (x)}{x^2 \left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx-2 \int \frac {1}{x^2 \log \left (e^4+e^x-x-\log (x)\right )} \, dx+\int \frac {-2+x}{x \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx+\int \frac {-1-\left (1+e^4\right ) x+x^2+x \log (x)}{x \left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx\\ &=2 \int \left (-\frac {1}{\left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}+\frac {1+e^4}{x \left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}-\frac {1}{x^2 \left (-e^4-e^x+x+\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}+\frac {\log (x)}{x \left (-e^4-e^x+x+\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}\right ) \, dx-2 \int \frac {1}{x^2 \log \left (e^4+e^x-x-\log (x)\right )} \, dx+\int \left (\frac {1}{\log ^2\left (e^4+e^x-x-\log (x)\right )}-\frac {2}{x \log ^2\left (e^4+e^x-x-\log (x)\right )}\right ) \, dx+\int \left (-\frac {1+e^4}{\left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}+\frac {\log (x)}{\left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}+\frac {1}{x \left (-e^4-e^x+x+\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}-\frac {x}{\left (-e^4-e^x+x+\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1}{x \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx\right )-2 \int \frac {1}{\left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx-2 \int \frac {1}{x^2 \left (-e^4-e^x+x+\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx+2 \int \frac {\log (x)}{x \left (-e^4-e^x+x+\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx-2 \int \frac {1}{x^2 \log \left (e^4+e^x-x-\log (x)\right )} \, dx+\left (-1-e^4\right ) \int \frac {1}{\left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx+\left (2 \left (1+e^4\right )\right ) \int \frac {1}{x \left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx+\int \frac {1}{\log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx+\int \frac {\log (x)}{\left (e^4+e^x-x-\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx+\int \frac {1}{x \left (-e^4-e^x+x+\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx-\int \frac {x}{\left (-e^4-e^x+x+\log (x)\right ) \log ^2\left (e^4+e^x-x-\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 26, normalized size = 1.00 \begin {gather*} \frac {2-x}{x \log \left (e^4+e^x-x-\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 23, normalized size = 0.88 \begin {gather*} -\frac {x - 2}{x \log \left (-x + e^{4} + e^{x} - \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.92
method | result | size |
risch | \(-\frac {x -2}{x \ln \left (-\ln \relax (x )+{\mathrm e}^{x}+{\mathrm e}^{4}-x \right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 23, normalized size = 0.88 \begin {gather*} -\frac {x - 2}{x \log \left (-x + e^{4} + e^{x} - \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.98, size = 140, normalized size = 5.38 \begin {gather*} \frac {2\,\left (2\,x+x\,{\mathrm {e}}^4+x^2\,{\mathrm {e}}^4+x^3\,{\mathrm {e}}^4+x^2-x^4+1\right )}{x^2\,\left (x-x\,{\mathrm {e}}^x+1\right )\,\left (x^2+x+1\right )}-\frac {2}{x^2}-\frac {2\,\ln \relax (x)}{x\,\left (x-x\,{\mathrm {e}}^x+1\right )}-\frac {\frac {x-2}{x}-\frac {2\,\ln \left ({\mathrm {e}}^4-x+{\mathrm {e}}^x-\ln \relax (x)\right )\,\left (x-{\mathrm {e}}^4-{\mathrm {e}}^x+\ln \relax (x)\right )}{x\,\left (x-x\,{\mathrm {e}}^x+1\right )}}{\ln \left ({\mathrm {e}}^4-x+{\mathrm {e}}^x-\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.92, size = 17, normalized size = 0.65 \begin {gather*} \frac {2 - x}{x \log {\left (- x + e^{x} - \log {\relax (x )} + e^{4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________