Optimal. Leaf size=21 \[ 4 \left (4+2 x+\frac {\log ^2\left (5 e^x\right )}{(-1+x)^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 3, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6688, 2168, 31} \begin {gather*} 8 x+\frac {4 \log ^2\left (5 e^x\right )}{(1-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 2168
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (8+\frac {8 \log \left (5 e^x\right )}{(-1+x)^2}-\frac {8 \log ^2\left (5 e^x\right )}{(-1+x)^3}\right ) \, dx\\ &=8 x+8 \int \frac {\log \left (5 e^x\right )}{(-1+x)^2} \, dx-8 \int \frac {\log ^2\left (5 e^x\right )}{(-1+x)^3} \, dx\\ &=8 x+\frac {8 \log \left (5 e^x\right )}{1-x}+\frac {4 \log ^2\left (5 e^x\right )}{(1-x)^2}+8 \int \frac {1}{-1+x} \, dx-8 \int \frac {\log \left (5 e^x\right )}{(-1+x)^2} \, dx\\ &=8 x+\frac {4 \log ^2\left (5 e^x\right )}{(1-x)^2}+8 \log (1-x)-8 \int \frac {1}{-1+x} \, dx\\ &=8 x+\frac {4 \log ^2\left (5 e^x\right )}{(1-x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 20, normalized size = 0.95 \begin {gather*} -12+8 x+\frac {4 \log ^2\left (5 e^x\right )}{(-1+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 36, normalized size = 1.71 \begin {gather*} \frac {4 \, {\left (2 \, x^{3} - 4 \, x^{2} + 2 \, x \log \relax (5) + \log \relax (5)^{2} + 4 \, x - 1\right )}}{x^{2} - 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 25, normalized size = 1.19 \begin {gather*} 8 \, x + \frac {4 \, {\left (2 \, x \log \relax (5) + \log \relax (5)^{2} + 2 \, x - 1\right )}}{{\left (x - 1\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 19, normalized size = 0.90
method | result | size |
default | \(8 x +\frac {4 \ln \left (5 \,{\mathrm e}^{x}\right )^{2}}{\left (x -1\right )^{2}}\) | \(19\) |
risch | \(\frac {4 \ln \left ({\mathrm e}^{x}\right )^{2}}{x^{2}-2 x +1}+\frac {8 \ln \relax (5) \ln \left ({\mathrm e}^{x}\right )}{x^{2}-2 x +1}+\frac {8 x^{3}+4 \ln \relax (5)^{2}-16 x^{2}+8 x}{x^{2}-2 x +1}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 151, normalized size = 7.19 \begin {gather*} 8 \, x - \frac {4 \, {\left (2 \, x - 1\right )} \log \left (5 \, e^{x}\right )}{x^{2} - 2 \, x + 1} + \frac {4 \, \log \left (5 \, e^{x}\right )^{2}}{x^{2} - 2 \, x + 1} - \frac {4 \, {\left (6 \, x - 5\right )}}{x^{2} - 2 \, x + 1} + \frac {12 \, {\left (4 \, x - 3\right )}}{x^{2} - 2 \, x + 1} - \frac {12 \, {\left (2 \, x - 1\right )}}{x^{2} - 2 \, x + 1} + \frac {4 \, \log \left (5 \, e^{x}\right )}{x^{2} - 2 \, x + 1} + \frac {8 \, \log \left (5 \, e^{x}\right )}{x - 1} + \frac {4}{x^{2} - 2 \, x + 1} - 8 \, \log \left (2 \, x - 2\right ) + 8 \, \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.46, size = 29, normalized size = 1.38 \begin {gather*} 8\,x+\frac {8\,\ln \relax (5)+8}{x-1}+\frac {4\,{\left (\ln \relax (5)+1\right )}^2}{{\left (x-1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 27, normalized size = 1.29 \begin {gather*} 8 x + \frac {x \left (8 + 8 \log {\relax (5 )}\right ) - 4 + 4 \log {\relax (5 )}^{2}}{x^{2} - 2 x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________