Optimal. Leaf size=23 \[ 4 \left (x-2 \left (x+\log (5)+(\log (\log (-5+x))-\log (\log (x)))^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (20 x-4 x^2\right ) \log (-5+x) \log (x)+((-80+16 x) \log (-5+x)-16 x \log (x)) \log (\log (-5+x))+((80-16 x) \log (-5+x)+16 x \log (x)) \log (\log (x))}{\left (-5 x+x^2\right ) \log (-5+x) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (20 x-4 x^2\right ) \log (-5+x) \log (x)+((-80+16 x) \log (-5+x)-16 x \log (x)) \log (\log (-5+x))+((80-16 x) \log (-5+x)+16 x \log (x)) \log (\log (x))}{(-5+x) x \log (-5+x) \log (x)} \, dx\\ &=\int \left (-\frac {16 (\log (\log (-5+x))-\log (\log (x)))}{(-5+x) \log (-5+x)}-\frac {4 (x \log (x)-4 \log (\log (-5+x))+4 \log (\log (x)))}{x \log (x)}\right ) \, dx\\ &=-\left (4 \int \frac {x \log (x)-4 \log (\log (-5+x))+4 \log (\log (x))}{x \log (x)} \, dx\right )-16 \int \frac {\log (\log (-5+x))-\log (\log (x))}{(-5+x) \log (-5+x)} \, dx\\ &=-\left (4 \int \left (\frac {x \log (x)-4 \log (\log (-5+x))}{x \log (x)}+\frac {4 \log (\log (x))}{x \log (x)}\right ) \, dx\right )-16 \int \left (\frac {\log (\log (-5+x))}{(-5+x) \log (-5+x)}-\frac {\log (\log (x))}{(-5+x) \log (-5+x)}\right ) \, dx\\ &=-\left (4 \int \frac {x \log (x)-4 \log (\log (-5+x))}{x \log (x)} \, dx\right )-16 \int \frac {\log (\log (-5+x))}{(-5+x) \log (-5+x)} \, dx+16 \int \frac {\log (\log (x))}{(-5+x) \log (-5+x)} \, dx-16 \int \frac {\log (\log (x))}{x \log (x)} \, dx\\ &=-8 \log ^2(\log (-5+x))-4 \int \left (1-\frac {4 \log (\log (-5+x))}{x \log (x)}\right ) \, dx+16 \int \frac {\log (\log (x))}{(-5+x) \log (-5+x)} \, dx-16 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,\log (x)\right )\\ &=-4 x-8 \log ^2(\log (-5+x))-8 \log ^2(\log (x))+16 \int \frac {\log (\log (-5+x))}{x \log (x)} \, dx+16 \int \frac {\log (\log (x))}{(-5+x) \log (-5+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 30, normalized size = 1.30 \begin {gather*} -4 x-8 \log ^2(\log (-5+x))+16 \log (\log (-5+x)) \log (\log (x))-8 \log ^2(\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 30, normalized size = 1.30 \begin {gather*} -8 \, \log \left (\log \left (x - 5\right )\right )^{2} + 16 \, \log \left (\log \left (x - 5\right )\right ) \log \left (\log \relax (x)\right ) - 8 \, \log \left (\log \relax (x)\right )^{2} - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 30, normalized size = 1.30 \begin {gather*} -8 \, \log \left (\log \left (x - 5\right )\right )^{2} + 16 \, \log \left (\log \left (x - 5\right )\right ) \log \left (\log \relax (x)\right ) - 8 \, \log \left (\log \relax (x)\right )^{2} - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 31, normalized size = 1.35
method | result | size |
risch | \(-8 \ln \left (\ln \relax (x )\right )^{2}+16 \ln \left (\ln \relax (x )\right ) \ln \left (\ln \left (x -5\right )\right )-8 \ln \left (\ln \left (x -5\right )\right )^{2}-4 x\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 30, normalized size = 1.30 \begin {gather*} -8 \, \log \left (\log \left (x - 5\right )\right )^{2} + 16 \, \log \left (\log \left (x - 5\right )\right ) \log \left (\log \relax (x)\right ) - 8 \, \log \left (\log \relax (x)\right )^{2} - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.06, size = 30, normalized size = 1.30 \begin {gather*} -8\,{\ln \left (\ln \relax (x)\right )}^2+16\,\ln \left (\ln \relax (x)\right )\,\ln \left (\ln \left (x-5\right )\right )-8\,{\ln \left (\ln \left (x-5\right )\right )}^2-4\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________