Optimal. Leaf size=28 \[ \frac {5 e^{-x}}{x \left (4+\log \left (4-\frac {e^x (-8+x)}{x}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 9.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {80 x+80 x^2+e^x \left (120+180 x-25 x^2\right )+\left (20 x+20 x^2+e^x \left (40+35 x-5 x^2\right )\right ) \log \left (\frac {e^x (8-x)+4 x}{x}\right )}{-64 e^x x^3+e^{2 x} \left (-128 x^2+16 x^3\right )+\left (-32 e^x x^3+e^{2 x} \left (-64 x^2+8 x^3\right )\right ) \log \left (\frac {e^x (8-x)+4 x}{x}\right )+\left (-4 e^x x^3+e^{2 x} \left (-8 x^2+x^3\right )\right ) \log ^2\left (\frac {e^x (8-x)+4 x}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (80 x (1+x)+5 e^x \left (24+36 x-5 x^2\right )-5 \left (e^x (-8+x)-4 x\right ) (1+x) \log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )}{\left (e^x (-8+x)-4 x\right ) x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\\ &=\int \left (-\frac {20 e^{-x} \left (8-8 x+x^2\right )}{(-8+x) x \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}-\frac {5 e^{-x} \left (-24-36 x+5 x^2-8 \log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )-7 x \log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )+x^2 \log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )}{(-8+x) x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}\right ) \, dx\\ &=-\left (5 \int \frac {e^{-x} \left (-24-36 x+5 x^2-8 \log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )-7 x \log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )+x^2 \log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )}{(-8+x) x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\right )-20 \int \frac {e^{-x} \left (8-8 x+x^2\right )}{(-8+x) x \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\\ &=-\left (5 \int \frac {e^{-x} \left (24+36 x-5 x^2-\left (-8-7 x+x^2\right ) \log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )}{(8-x) x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\right )-20 \int \left (\frac {e^{-x}}{\left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}+\frac {e^{-x}}{(-8+x) \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}-\frac {e^{-x}}{x \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}\right ) \, dx\\ &=-\left (5 \int \left (\frac {e^{-x} \left (8-8 x+x^2\right )}{(-8+x) x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}+\frac {e^{-x} (1+x)}{x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )}\right ) \, dx\right )-20 \int \frac {e^{-x}}{\left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx-20 \int \frac {e^{-x}}{(-8+x) \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx+20 \int \frac {e^{-x}}{x \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\\ &=-\left (5 \int \frac {e^{-x} \left (8-8 x+x^2\right )}{(-8+x) x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\right )-5 \int \frac {e^{-x} (1+x)}{x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )} \, dx-20 \int \frac {e^{-x}}{\left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx-20 \int \frac {e^{-x}}{(-8+x) \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx+20 \int \frac {e^{-x}}{x \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\\ &=-\left (5 \int \left (\frac {e^{-x}}{8 (-8+x) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}-\frac {e^{-x}}{x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}+\frac {7 e^{-x}}{8 x \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2}\right ) \, dx\right )-5 \int \left (\frac {e^{-x}}{x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )}+\frac {e^{-x}}{x \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )}\right ) \, dx-20 \int \frac {e^{-x}}{\left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx-20 \int \frac {e^{-x}}{(-8+x) \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx+20 \int \frac {e^{-x}}{x \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\\ &=-\left (\frac {5}{8} \int \frac {e^{-x}}{(-8+x) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\right )-\frac {35}{8} \int \frac {e^{-x}}{x \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx+5 \int \frac {e^{-x}}{x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx-5 \int \frac {e^{-x}}{x^2 \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )} \, dx-5 \int \frac {e^{-x}}{x \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )} \, dx-20 \int \frac {e^{-x}}{\left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx-20 \int \frac {e^{-x}}{(-8+x) \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx+20 \int \frac {e^{-x}}{x \left (-8 e^x-4 x+e^x x\right ) \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 1.00 \begin {gather*} \frac {5 e^{-x}}{x \left (4+\log \left (4+e^x \left (-1+\frac {8}{x}\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 30, normalized size = 1.07 \begin {gather*} \frac {5}{x e^{x} \log \left (-\frac {{\left (x - 8\right )} e^{x} - 4 \, x}{x}\right ) + 4 \, x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.05, size = 32, normalized size = 1.14 \begin {gather*} \frac {5}{x e^{x} \log \left (-\frac {x e^{x} - 4 \, x - 8 \, e^{x}}{x}\right ) + 4 \, x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.33, size = 195, normalized size = 6.96
method | result | size |
risch | \(\frac {10 i {\mathrm e}^{-x}}{x \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \left ({\mathrm e}^{x}-4\right )-8 \,{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \left ({\mathrm e}^{x}-4\right )-8 \,{\mathrm e}^{x}\right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \left ({\mathrm e}^{x}-4\right )-8 \,{\mathrm e}^{x}\right )}{x}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i \left (x \left ({\mathrm e}^{x}-4\right )-8 \,{\mathrm e}^{x}\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x \left ({\mathrm e}^{x}-4\right )-8 \,{\mathrm e}^{x}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \left ({\mathrm e}^{x}-4\right )-8 \,{\mathrm e}^{x}\right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left (x \left ({\mathrm e}^{x}-4\right )-8 \,{\mathrm e}^{x}\right )}{x}\right )^{3}-2 \pi -2 i \ln \relax (x )+2 i \ln \left (x \left ({\mathrm e}^{x}-4\right )-8 \,{\mathrm e}^{x}\right )+8 i\right )}\) | \(195\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.90, size = 33, normalized size = 1.18 \begin {gather*} \frac {5}{x e^{x} \log \left (-{\left (x - 8\right )} e^{x} + 4 \, x\right ) - {\left (x \log \relax (x) - 4 \, x\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.96, size = 29, normalized size = 1.04 \begin {gather*} \frac {5\,{\mathrm {e}}^{-x}}{x\,\left (\ln \left (\frac {4\,x-{\mathrm {e}}^x\,\left (x-8\right )}{x}\right )+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 26, normalized size = 0.93 \begin {gather*} \frac {5}{x e^{x} \log {\left (\frac {4 x + \left (8 - x\right ) e^{x}}{x} \right )} + 4 x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________