Optimal. Leaf size=31 \[ -e^{\frac {1}{4} (4+2 x)}-\frac {x}{i \pi +\log \left (\frac {21}{5}\right )}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 55, normalized size of antiderivative = 1.77, number of steps used = 6, number of rules used = 4, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 14, 2194, 43} \begin {gather*} -e^{\frac {x}{2}+1}-\frac {x}{\log \left (\frac {21}{5}\right )+i \pi }+\frac {\left (\log \left (\frac {441}{25}\right )+2 i \pi \right ) \log (x)}{2 \left (\log \left (\frac {21}{5}\right )+i \pi \right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-2 x+2 \left (i \pi +\log \left (\frac {21}{5}\right )\right )-e^{\frac {2+x}{2}} x \left (i \pi +\log \left (\frac {21}{5}\right )\right )}{x} \, dx}{2 \left (i \pi +\log \left (\frac {21}{5}\right )\right )}\\ &=\frac {\int \left (-i e^{1+\frac {x}{2}} \left (\pi -i \log \left (\frac {21}{5}\right )\right )+\frac {i \left (2 \pi +2 i x-i \log \left (\frac {441}{25}\right )\right )}{x}\right ) \, dx}{2 \left (i \pi +\log \left (\frac {21}{5}\right )\right )}\\ &=-\left (\frac {1}{2} \int e^{1+\frac {x}{2}} \, dx\right )+\frac {\int \frac {2 \pi +2 i x-i \log \left (\frac {441}{25}\right )}{x} \, dx}{2 \left (\pi -i \log \left (\frac {21}{5}\right )\right )}\\ &=-e^{1+\frac {x}{2}}+\frac {\int \left (2 i+\frac {2 \pi -i \log \left (\frac {441}{25}\right )}{x}\right ) \, dx}{2 \left (\pi -i \log \left (\frac {21}{5}\right )\right )}\\ &=-e^{1+\frac {x}{2}}-\frac {x}{i \pi +\log \left (\frac {21}{5}\right )}+\frac {\left (2 \pi -i \log \left (\frac {441}{25}\right )\right ) \log (x)}{2 \left (\pi -i \log \left (\frac {21}{5}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 29, normalized size = 0.94 \begin {gather*} -e^{1+\frac {x}{2}}-\frac {x}{i \pi +\log \left (\frac {21}{5}\right )}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 37, normalized size = 1.19 \begin {gather*} \frac {{\left (-i \, \pi - \log \left (\frac {21}{5}\right )\right )} e^{\left (\frac {1}{2} \, x + 1\right )} + {\left (i \, \pi + \log \left (\frac {21}{5}\right )\right )} \log \relax (x) - x}{i \, \pi + \log \left (\frac {21}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 42, normalized size = 1.35 \begin {gather*} \frac {-i \, \pi e^{\left (\frac {1}{2} \, x + 1\right )} - e^{\left (\frac {1}{2} \, x + 1\right )} \log \left (\frac {21}{5}\right ) + i \, \pi \log \relax (x) + \log \left (\frac {21}{5}\right ) \log \relax (x) - x}{i \, \pi + \log \left (\frac {21}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 45, normalized size = 1.45
method | result | size |
norman | \(\frac {\left (i \pi +\ln \relax (5)-\ln \left (21\right )\right ) x}{\pi ^{2}+\ln \left (21\right )^{2}-2 \ln \left (21\right ) \ln \relax (5)+\ln \relax (5)^{2}}-{\mathrm e}^{1+\frac {x}{2}}+\ln \relax (x )\) | \(45\) |
derivativedivides | \(\frac {2 i \pi \ln \left (\frac {x}{2}\right )-2 i \pi \,{\mathrm e} \expIntegralEi \left (1, -\frac {x}{2}\right )-2 i \pi \left ({\mathrm e}^{1+\frac {x}{2}}-{\mathrm e} \expIntegralEi \left (1, -\frac {x}{2}\right )\right )-4-2 x -2 \ln \relax (5) \ln \left (\frac {x}{2}\right )+2 \ln \left (21\right ) \ln \left (\frac {x}{2}\right )+2 \,{\mathrm e}^{1+\frac {x}{2}} \ln \relax (5)-2 \,{\mathrm e}^{1+\frac {x}{2}} \ln \left (21\right )}{2 \ln \left (\frac {21}{5}\right )+2 i \pi }\) | \(92\) |
default | \(\frac {2 i \pi \ln \left (\frac {x}{2}\right )-2 i \pi \,{\mathrm e} \expIntegralEi \left (1, -\frac {x}{2}\right )-2 i \pi \left ({\mathrm e}^{1+\frac {x}{2}}-{\mathrm e} \expIntegralEi \left (1, -\frac {x}{2}\right )\right )-4-2 x -2 \ln \relax (5) \ln \left (\frac {x}{2}\right )+2 \ln \left (21\right ) \ln \left (\frac {x}{2}\right )+2 \,{\mathrm e}^{1+\frac {x}{2}} \ln \relax (5)-2 \,{\mathrm e}^{1+\frac {x}{2}} \ln \left (21\right )}{2 \ln \left (\frac {21}{5}\right )+2 i \pi }\) | \(92\) |
risch | \(-\frac {x}{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }-\frac {\ln \relax (x ) \ln \relax (5)}{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }+\frac {\ln \relax (x ) \ln \relax (7)}{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }+\frac {\ln \relax (x ) \ln \relax (3)}{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }+\frac {i \ln \relax (x ) \pi }{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }-\frac {i {\mathrm e}^{1+\frac {x}{2}} \pi }{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }+\frac {{\mathrm e}^{1+\frac {x}{2}} \ln \relax (5)}{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }-\frac {{\mathrm e}^{1+\frac {x}{2}} \ln \relax (7)}{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }-\frac {{\mathrm e}^{1+\frac {x}{2}} \ln \relax (3)}{\ln \relax (3)+\ln \relax (7)-\ln \relax (5)+i \pi }\) | \(201\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 42, normalized size = 1.35 \begin {gather*} \frac {-i \, \pi e^{\left (\frac {1}{2} \, x + 1\right )} - e^{\left (\frac {1}{2} \, x + 1\right )} \log \left (\frac {21}{5}\right ) + i \, \pi \log \relax (x) + \log \left (\frac {21}{5}\right ) \log \relax (x) - x}{i \, \pi + \log \left (\frac {21}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.66, size = 51, normalized size = 1.65 \begin {gather*} \ln \relax (x)-\frac {{\mathrm {e}}^{\frac {x}{2}+1}\,\left (2\,\Pi ^2+2\,{\ln \left (\frac {21}{5}\right )}^2\right )-x\,\left (-2\,\ln \left (\frac {21}{5}\right )+\Pi \,2{}\mathrm {i}\right )}{2\,\Pi ^2+2\,{\ln \left (\frac {21}{5}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 32, normalized size = 1.03 \begin {gather*} \frac {x + \left (- \log {\left (21 \right )} + \log {\relax (5 )} - i \pi \right ) \log {\relax (x )}}{- \log {\left (21 \right )} + \log {\relax (5 )} - i \pi } - e e^{\frac {x}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________