Optimal. Leaf size=26 \[ 5 x \left (-x+\left (x+\frac {e^x+x}{x}\right )^2+\frac {\log (x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 41, normalized size of antiderivative = 1.58, number of steps used = 7, number of rules used = 4, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {14, 2176, 2194, 2197} \begin {gather*} 5 x^3+5 x^2+5 x-10 e^x+10 e^x (x+2)+\frac {5 e^{2 x}}{x}+5 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (10 e^x (2+x)+\frac {5 e^{2 x} (-1+2 x)}{x^2}+\frac {5 \left (1+x+2 x^2+3 x^3\right )}{x}\right ) \, dx\\ &=5 \int \frac {e^{2 x} (-1+2 x)}{x^2} \, dx+5 \int \frac {1+x+2 x^2+3 x^3}{x} \, dx+10 \int e^x (2+x) \, dx\\ &=\frac {5 e^{2 x}}{x}+10 e^x (2+x)+5 \int \left (1+\frac {1}{x}+2 x+3 x^2\right ) \, dx-10 \int e^x \, dx\\ &=-10 e^x+\frac {5 e^{2 x}}{x}+5 x+5 x^2+5 x^3+10 e^x (2+x)+5 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 30, normalized size = 1.15 \begin {gather*} 5 \left (\frac {e^{2 x}}{x}+x+x^2+x^3+e^x (2+2 x)+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 32, normalized size = 1.23 \begin {gather*} \frac {5 \, {\left (x^{4} + x^{3} + x^{2} + 2 \, {\left (x^{2} + x\right )} e^{x} + x \log \relax (x) + e^{\left (2 \, x\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 35, normalized size = 1.35 \begin {gather*} \frac {5 \, {\left (x^{4} + x^{3} + 2 \, x^{2} e^{x} + x^{2} + 2 \, x e^{x} + x \log \relax (x) + e^{\left (2 \, x\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 36, normalized size = 1.38
method | result | size |
risch | \(5 x^{2}+5 x +5 \ln \relax (x )+5 x^{3}+\frac {5 \,{\mathrm e}^{2 x}}{x}+\left (10 x +10\right ) {\mathrm e}^{x}\) | \(36\) |
default | \(5 x^{2}+5 x +5 \ln \relax (x )+5 x^{3}+10 \,{\mathrm e}^{x} x +10 \,{\mathrm e}^{x}+\frac {5 \,{\mathrm e}^{2 x}}{x}\) | \(37\) |
norman | \(\frac {5 x^{2}+5 x^{3}+5 x^{4}+5 \,{\mathrm e}^{2 x}+10 \,{\mathrm e}^{x} x +10 \,{\mathrm e}^{x} x^{2}}{x}+5 \ln \relax (x )\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.48, size = 42, normalized size = 1.62 \begin {gather*} 5 \, x^{3} + 5 \, x^{2} + 10 \, {\left (x - 1\right )} e^{x} + 5 \, x + 10 \, {\rm Ei}\left (2 \, x\right ) + 20 \, e^{x} - 10 \, \Gamma \left (-1, -2 \, x\right ) + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.47, size = 36, normalized size = 1.38 \begin {gather*} 10\,{\mathrm {e}}^x+5\,\ln \relax (x)+x\,\left (10\,{\mathrm {e}}^x+5\right )+\frac {5\,{\mathrm {e}}^{2\,x}}{x}+5\,x^2+5\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 37, normalized size = 1.42 \begin {gather*} 5 x^{3} + 5 x^{2} + 5 x + 5 \log {\relax (x )} + \frac {\left (10 x^{2} + 10 x\right ) e^{x} + 5 e^{2 x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________