Optimal. Leaf size=25 \[ x \left (x+\log (3)+\frac {x}{\left (-1+e^{e^x+x}\right ) \log (9+x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 24.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+\left (-18 x-2 x^2\right ) \log (9+x)+\left (18 x+2 x^2+(9+x) \log (3)\right ) \log ^2(9+x)+e^{2 e^x+2 x} \left (18 x+2 x^2+(9+x) \log (3)\right ) \log ^2(9+x)+e^{e^x+x} \left (-x^2+\left (18 x-7 x^2-x^3+e^x \left (-9 x^2-x^3\right )\right ) \log (9+x)+\left (-36 x-4 x^2+(-18-2 x) \log (3)\right ) \log ^2(9+x)\right )}{e^{e^x+x} (-18-2 x) \log ^2(9+x)+(9+x) \log ^2(9+x)+e^{2 e^x+2 x} (9+x) \log ^2(9+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (-1+e^{e^x+x}\right ) x^2\right )-x (9+x) \left (2+e^{e^x+x} (-2+x)+e^{e^x+2 x} x\right ) \log (9+x)+\left (2 \left (-1+e^{e^x+x}\right )^2 x^2+9 \left (-1+e^{e^x+x}\right )^2 \log (3)+x \left (18+\log (3)+e^{2 \left (e^x+x\right )} (18+\log (3))-e^{e^x+x} (36+\log (9))\right )\right ) \log ^2(9+x)}{\left (1-e^{e^x+x}\right )^2 (9+x) \log ^2(9+x)} \, dx\\ &=\int \left (-\frac {e^{-e^x} \left (1+e^{e^x}\right ) x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)}-\frac {e^{-e^x} x \left (e^{e^x} x-18 e^{e^x} \log (9+x)+18 x \log (9+x)+7 e^{e^x} x \log (9+x)+2 x^2 \log (9+x)+e^{e^x} x^2 \log (9+x)\right )}{\left (-1+e^{e^x+x}\right ) (9+x) \log ^2(9+x)}+\frac {e^{-e^x} \left (-x^2+2 e^{e^x} x \log (9+x)+e^{e^x} \log (3) \log (9+x)\right )}{\log (9+x)}\right ) \, dx\\ &=-\int \frac {e^{-e^x} \left (1+e^{e^x}\right ) x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} x \left (e^{e^x} x-18 e^{e^x} \log (9+x)+18 x \log (9+x)+7 e^{e^x} x \log (9+x)+2 x^2 \log (9+x)+e^{e^x} x^2 \log (9+x)\right )}{\left (-1+e^{e^x+x}\right ) (9+x) \log ^2(9+x)} \, dx+\int \frac {e^{-e^x} \left (-x^2+2 e^{e^x} x \log (9+x)+e^{e^x} \log (3) \log (9+x)\right )}{\log (9+x)} \, dx\\ &=\int \left (2 x+\log (3)-\frac {e^{-e^x} x^2}{\log (9+x)}\right ) \, dx-\int \left (\frac {x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)}+\frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)}\right ) \, dx-\int \frac {e^{-e^x} x \left (-e^{e^x} x-(9+x) \left (e^{e^x} (-2+x)+2 x\right ) \log (9+x)\right )}{\left (1-e^{e^x+x}\right ) (9+x) \log ^2(9+x)} \, dx\\ &=x^2+x \log (3)-\int \frac {e^{-e^x} x^2}{\log (9+x)} \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \left (\frac {e^{-e^x} \left (e^{e^x} x-18 e^{e^x} \log (9+x)+18 x \log (9+x)+7 e^{e^x} x \log (9+x)+2 x^2 \log (9+x)+e^{e^x} x^2 \log (9+x)\right )}{\left (-1+e^{e^x+x}\right ) \log ^2(9+x)}-\frac {9 e^{-e^x} \left (e^{e^x} x-18 e^{e^x} \log (9+x)+18 x \log (9+x)+7 e^{e^x} x \log (9+x)+2 x^2 \log (9+x)+e^{e^x} x^2 \log (9+x)\right )}{\left (-1+e^{e^x+x}\right ) (9+x) \log ^2(9+x)}\right ) \, dx\\ &=x^2+x \log (3)+9 \int \frac {e^{-e^x} \left (e^{e^x} x-18 e^{e^x} \log (9+x)+18 x \log (9+x)+7 e^{e^x} x \log (9+x)+2 x^2 \log (9+x)+e^{e^x} x^2 \log (9+x)\right )}{\left (-1+e^{e^x+x}\right ) (9+x) \log ^2(9+x)} \, dx-\int \left (\frac {81 e^{-e^x}}{\log (9+x)}-\frac {18 e^{-e^x} (9+x)}{\log (9+x)}+\frac {e^{-e^x} (9+x)^2}{\log (9+x)}\right ) \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} \left (e^{e^x} x-18 e^{e^x} \log (9+x)+18 x \log (9+x)+7 e^{e^x} x \log (9+x)+2 x^2 \log (9+x)+e^{e^x} x^2 \log (9+x)\right )}{\left (-1+e^{e^x+x}\right ) \log ^2(9+x)} \, dx\\ &=x^2+x \log (3)+9 \int \frac {e^{-e^x} \left (-e^{e^x} x-(9+x) \left (e^{e^x} (-2+x)+2 x\right ) \log (9+x)\right )}{\left (1-e^{e^x+x}\right ) (9+x) \log ^2(9+x)} \, dx+18 \int \frac {e^{-e^x} (9+x)}{\log (9+x)} \, dx-81 \int \frac {e^{-e^x}}{\log (9+x)} \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} (9+x)^2}{\log (9+x)} \, dx-\int \frac {e^{-e^x} \left (-e^{e^x} x-(9+x) \left (e^{e^x} (-2+x)+2 x\right ) \log (9+x)\right )}{\left (1-e^{e^x+x}\right ) \log ^2(9+x)} \, dx\\ &=x^2+x \log (3)+9 \int \left (\frac {x}{\left (-1+e^{e^x+x}\right ) (9+x) \log ^2(9+x)}-\frac {18}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}+\frac {7 x}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}+\frac {18 e^{-e^x} x}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}+\frac {x^2}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}+\frac {2 e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}\right ) \, dx+18 \int \frac {e^{-e^x} (9+x)}{\log (9+x)} \, dx-81 \int \frac {e^{-e^x}}{\log (9+x)} \, dx-\int \left (\frac {x}{\left (-1+e^{e^x+x}\right ) \log ^2(9+x)}-\frac {18}{\left (-1+e^{e^x+x}\right ) \log (9+x)}+\frac {7 x}{\left (-1+e^{e^x+x}\right ) \log (9+x)}+\frac {18 e^{-e^x} x}{\left (-1+e^{e^x+x}\right ) \log (9+x)}+\frac {x^2}{\left (-1+e^{e^x+x}\right ) \log (9+x)}+\frac {2 e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right ) \log (9+x)}\right ) \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} (9+x)^2}{\log (9+x)} \, dx\\ &=x^2+x \log (3)-2 \int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-7 \int \frac {x}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx+9 \int \frac {x}{\left (-1+e^{e^x+x}\right ) (9+x) \log ^2(9+x)} \, dx+9 \int \frac {x^2}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx+18 \int \frac {1}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-18 \int \frac {e^{-e^x} x}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx+18 \int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx+18 \int \frac {e^{-e^x} (9+x)}{\log (9+x)} \, dx+63 \int \frac {x}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx-81 \int \frac {e^{-e^x}}{\log (9+x)} \, dx-162 \int \frac {1}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx+162 \int \frac {e^{-e^x} x}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx-\int \frac {x}{\left (-1+e^{e^x+x}\right ) \log ^2(9+x)} \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-\int \frac {e^{-e^x} (9+x)^2}{\log (9+x)} \, dx\\ &=x^2+x \log (3)-2 \int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-7 \int \frac {x}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx+9 \int \left (\frac {1}{\left (-1+e^{e^x+x}\right ) \log ^2(9+x)}-\frac {9}{\left (-1+e^{e^x+x}\right ) (9+x) \log ^2(9+x)}\right ) \, dx+9 \int \left (-\frac {9}{\left (-1+e^{e^x+x}\right ) \log (9+x)}+\frac {x}{\left (-1+e^{e^x+x}\right ) \log (9+x)}+\frac {81}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}\right ) \, dx+18 \int \left (-\frac {9 e^{-e^x}}{\left (-1+e^{e^x+x}\right ) \log (9+x)}+\frac {e^{-e^x} x}{\left (-1+e^{e^x+x}\right ) \log (9+x)}+\frac {81 e^{-e^x}}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}\right ) \, dx+18 \int \frac {1}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-18 \int \frac {e^{-e^x} x}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx+18 \int \frac {e^{-e^x} (9+x)}{\log (9+x)} \, dx+63 \int \left (\frac {1}{\left (-1+e^{e^x+x}\right ) \log (9+x)}-\frac {9}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}\right ) \, dx-81 \int \frac {e^{-e^x}}{\log (9+x)} \, dx+162 \int \left (\frac {e^{-e^x}}{\left (-1+e^{e^x+x}\right ) \log (9+x)}-\frac {9 e^{-e^x}}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)}\right ) \, dx-162 \int \frac {1}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx-\int \frac {x}{\left (-1+e^{e^x+x}\right ) \log ^2(9+x)} \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-\int \frac {e^{-e^x} (9+x)^2}{\log (9+x)} \, dx\\ &=x^2+x \log (3)-2 \int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-7 \int \frac {x}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx+9 \int \frac {1}{\left (-1+e^{e^x+x}\right ) \log ^2(9+x)} \, dx+9 \int \frac {x}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx+18 \int \frac {1}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx+18 \int \frac {e^{-e^x} (9+x)}{\log (9+x)} \, dx+63 \int \frac {1}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-81 \int \frac {1}{\left (-1+e^{e^x+x}\right ) (9+x) \log ^2(9+x)} \, dx-81 \int \frac {e^{-e^x}}{\log (9+x)} \, dx-81 \int \frac {1}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-162 \int \frac {1}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx-567 \int \frac {1}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx+729 \int \frac {1}{\left (-1+e^{e^x+x}\right ) (9+x) \log (9+x)} \, dx-\int \frac {x}{\left (-1+e^{e^x+x}\right ) \log ^2(9+x)} \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {e^{-e^x} x^2}{\left (-1+e^{e^x+x}\right )^2 \log (9+x)} \, dx-\int \frac {x^2}{\left (-1+e^{e^x+x}\right ) \log (9+x)} \, dx-\int \frac {e^{-e^x} (9+x)^2}{\log (9+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 25, normalized size = 1.00 \begin {gather*} x \left (x+\log (3)+\frac {x}{\left (-1+e^{e^x+x}\right ) \log (9+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 56, normalized size = 2.24 \begin {gather*} \frac {{\left (x^{2} + x \log \relax (3)\right )} e^{\left (x + e^{x}\right )} \log \left (x + 9\right ) + x^{2} - {\left (x^{2} + x \log \relax (3)\right )} \log \left (x + 9\right )}{e^{\left (x + e^{x}\right )} \log \left (x + 9\right ) - \log \left (x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 68, normalized size = 2.72 \begin {gather*} \frac {x^{2} e^{\left (x + e^{x}\right )} \log \left (x + 9\right ) + x e^{\left (x + e^{x}\right )} \log \relax (3) \log \left (x + 9\right ) - x^{2} \log \left (x + 9\right ) - x \log \relax (3) \log \left (x + 9\right ) + x^{2}}{e^{\left (x + e^{x}\right )} \log \left (x + 9\right ) - \log \left (x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 28, normalized size = 1.12
method | result | size |
risch | \(x \ln \relax (3)+x^{2}+\frac {x^{2}}{\ln \left (x +9\right ) \left ({\mathrm e}^{{\mathrm e}^{x}+x}-1\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 56, normalized size = 2.24 \begin {gather*} \frac {{\left (x^{2} + x \log \relax (3)\right )} e^{\left (x + e^{x}\right )} \log \left (x + 9\right ) + x^{2} - {\left (x^{2} + x \log \relax (3)\right )} \log \left (x + 9\right )}{e^{\left (x + e^{x}\right )} \log \left (x + 9\right ) - \log \left (x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.67, size = 57, normalized size = 2.28 \begin {gather*} \frac {x\,\left (x-\ln \left (x+9\right )\,\ln \relax (3)-x\,\ln \left (x+9\right )+\ln \left (x+9\right )\,{\mathrm {e}}^{x+{\mathrm {e}}^x}\,\ln \relax (3)+x\,\ln \left (x+9\right )\,{\mathrm {e}}^{x+{\mathrm {e}}^x}\right )}{\ln \left (x+9\right )\,\left ({\mathrm {e}}^{x+{\mathrm {e}}^x}-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 27, normalized size = 1.08 \begin {gather*} x^{2} + \frac {x^{2}}{e^{x + e^{x}} \log {\left (x + 9 \right )} - \log {\left (x + 9 \right )}} + x \log {\relax (3 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________