Optimal. Leaf size=25 \[ e^{-5+\frac {x}{\left (1-\frac {5}{1-3 x}\right )^2+2 x}} \]
________________________________________________________________________________________
Rubi [F] time = 3.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right ) \left (16-192 x+279 x^2+432 x^3+81 x^4\right )}{256+832 x+580 x^2+420 x^3+945 x^4-108 x^5+324 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right ) \left (16-192 x+279 x^2+432 x^3+81 x^4\right )}{\left (16+26 x-3 x^2+18 x^3\right )^2} \, dx\\ &=\int \left (\frac {5 \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{17 (1+2 x)^2}+\frac {90 \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right ) (-16+21 x)}{17 \left (16-6 x+9 x^2\right )^2}+\frac {27 \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{17 \left (16-6 x+9 x^2\right )}\right ) \, dx\\ &=\frac {5}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{(1+2 x)^2} \, dx+\frac {27}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{16-6 x+9 x^2} \, dx+\frac {90}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right ) (-16+21 x)}{\left (16-6 x+9 x^2\right )^2} \, dx\\ &=\frac {5}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{(1+2 x)^2} \, dx+\frac {27}{17} \int \left (\frac {i \sqrt {\frac {3}{5}} \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{6+6 i \sqrt {15}-18 x}+\frac {i \sqrt {\frac {3}{5}} \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{-6+6 i \sqrt {15}+18 x}\right ) \, dx+\frac {90}{17} \int \left (-\frac {16 \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{\left (16-6 x+9 x^2\right )^2}+\frac {21 \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right ) x}{\left (16-6 x+9 x^2\right )^2}\right ) \, dx\\ &=\frac {5}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{(1+2 x)^2} \, dx-\frac {1440}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{\left (16-6 x+9 x^2\right )^2} \, dx+\frac {1890}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right ) x}{\left (16-6 x+9 x^2\right )^2} \, dx+\frac {1}{17} \left (27 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{6+6 i \sqrt {15}-18 x} \, dx+\frac {1}{17} \left (27 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{-6+6 i \sqrt {15}+18 x} \, dx\\ &=\frac {5}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{(1+2 x)^2} \, dx-\frac {1440}{17} \int \left (-\frac {3 \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{5 \left (6+6 i \sqrt {15}-18 x\right )^2}+\frac {i \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{10 \sqrt {15} \left (6+6 i \sqrt {15}-18 x\right )}-\frac {3 \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{5 \left (-6+6 i \sqrt {15}+18 x\right )^2}+\frac {i \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{10 \sqrt {15} \left (-6+6 i \sqrt {15}+18 x\right )}\right ) \, dx+\frac {1890}{17} \int \left (-\frac {\left (6+6 i \sqrt {15}\right ) \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{30 \left (6+6 i \sqrt {15}-18 x\right )^2}+\frac {i \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{30 \sqrt {15} \left (6+6 i \sqrt {15}-18 x\right )}-\frac {\left (6-6 i \sqrt {15}\right ) \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{30 \left (-6+6 i \sqrt {15}+18 x\right )^2}+\frac {i \exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{30 \sqrt {15} \left (-6+6 i \sqrt {15}+18 x\right )}\right ) \, dx+\frac {1}{17} \left (27 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{6+6 i \sqrt {15}-18 x} \, dx+\frac {1}{17} \left (27 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{-6+6 i \sqrt {15}+18 x} \, dx\\ &=\frac {5}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{(1+2 x)^2} \, dx+\frac {864}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{\left (6+6 i \sqrt {15}-18 x\right )^2} \, dx+\frac {864}{17} \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{\left (-6+6 i \sqrt {15}+18 x\right )^2} \, dx+\frac {1}{17} \left (21 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{6+6 i \sqrt {15}-18 x} \, dx+\frac {1}{17} \left (21 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{-6+6 i \sqrt {15}+18 x} \, dx+\frac {1}{17} \left (27 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{6+6 i \sqrt {15}-18 x} \, dx+\frac {1}{17} \left (27 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{-6+6 i \sqrt {15}+18 x} \, dx-\frac {1}{17} \left (48 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{6+6 i \sqrt {15}-18 x} \, dx-\frac {1}{17} \left (48 i \sqrt {\frac {3}{5}}\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{-6+6 i \sqrt {15}+18 x} \, dx-\frac {1}{17} \left (378 \left (1-i \sqrt {15}\right )\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{\left (-6+6 i \sqrt {15}+18 x\right )^2} \, dx-\frac {1}{17} \left (378 \left (1+i \sqrt {15}\right )\right ) \int \frac {\exp \left (\frac {-80-129 x+9 x^2-81 x^3}{16+26 x-3 x^2+18 x^3}\right )}{\left (6+6 i \sqrt {15}-18 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.57, size = 37, normalized size = 1.48 \begin {gather*} e^{-\frac {9}{2}+\frac {-16-24 x-9 x^2}{2 \left (16+26 x-3 x^2+18 x^3\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 35, normalized size = 1.40 \begin {gather*} e^{\left (-\frac {81 \, x^{3} - 9 \, x^{2} + 129 \, x + 80}{18 \, x^{3} - 3 \, x^{2} + 26 \, x + 16}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 85, normalized size = 3.40 \begin {gather*} e^{\left (-\frac {81 \, x^{3}}{18 \, x^{3} - 3 \, x^{2} + 26 \, x + 16} + \frac {9 \, x^{2}}{18 \, x^{3} - 3 \, x^{2} + 26 \, x + 16} - \frac {129 \, x}{18 \, x^{3} - 3 \, x^{2} + 26 \, x + 16} - \frac {80}{18 \, x^{3} - 3 \, x^{2} + 26 \, x + 16}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 36, normalized size = 1.44
method | result | size |
gosper | \({\mathrm e}^{-\frac {81 x^{3}-9 x^{2}+129 x +80}{18 x^{3}-3 x^{2}+26 x +16}}\) | \(36\) |
risch | \({\mathrm e}^{-\frac {81 x^{3}-9 x^{2}+129 x +80}{\left (2 x +1\right ) \left (9 x^{2}-6 x +16\right )}}\) | \(38\) |
norman | \(\frac {26 x \,{\mathrm e}^{\frac {-81 x^{3}+9 x^{2}-129 x -80}{18 x^{3}-3 x^{2}+26 x +16}}-3 x^{2} {\mathrm e}^{\frac {-81 x^{3}+9 x^{2}-129 x -80}{18 x^{3}-3 x^{2}+26 x +16}}+18 x^{3} {\mathrm e}^{\frac {-81 x^{3}+9 x^{2}-129 x -80}{18 x^{3}-3 x^{2}+26 x +16}}+16 \,{\mathrm e}^{\frac {-81 x^{3}+9 x^{2}-129 x -80}{18 x^{3}-3 x^{2}+26 x +16}}}{18 x^{3}-3 x^{2}+26 x +16}\) | \(171\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.88, size = 41, normalized size = 1.64 \begin {gather*} e^{\left (-\frac {27 \, x}{17 \, {\left (9 \, x^{2} - 6 \, x + 16\right )}} - \frac {96}{17 \, {\left (9 \, x^{2} - 6 \, x + 16\right )}} - \frac {5}{34 \, {\left (2 \, x + 1\right )}} - \frac {9}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.87, size = 88, normalized size = 3.52 \begin {gather*} {\mathrm {e}}^{-\frac {129\,x}{18\,x^3-3\,x^2+26\,x+16}}\,{\mathrm {e}}^{\frac {9\,x^2}{18\,x^3-3\,x^2+26\,x+16}}\,{\mathrm {e}}^{-\frac {81\,x^3}{18\,x^3-3\,x^2+26\,x+16}}\,{\mathrm {e}}^{-\frac {80}{18\,x^3-3\,x^2+26\,x+16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 31, normalized size = 1.24 \begin {gather*} e^{\frac {- 81 x^{3} + 9 x^{2} - 129 x - 80}{18 x^{3} - 3 x^{2} + 26 x + 16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________