Optimal. Leaf size=17 \[ \log \left (\left (e^{e^x}+2 x\right ) (6 x+\log (4))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24 x+2 \log (4)+e^{e^x} \left (6+e^x (6 x+\log (4))\right )}{12 x^2+2 x \log (4)+e^{e^x} (6 x+\log (4))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {24 x+2 \log (4)+e^{e^x} \left (6+e^x (6 x+\log (4))\right )}{\left (e^{e^x}+2 x\right ) (6 x+\log (4))} \, dx\\ &=\int \left (\frac {e^{e^x+x}}{e^{e^x}+2 x}+\frac {2 \left (3 e^{e^x}+12 x+\log (4)\right )}{\left (e^{e^x}+2 x\right ) (6 x+\log (4))}\right ) \, dx\\ &=2 \int \frac {3 e^{e^x}+12 x+\log (4)}{\left (e^{e^x}+2 x\right ) (6 x+\log (4))} \, dx+\int \frac {e^{e^x+x}}{e^{e^x}+2 x} \, dx\\ &=2 \int \left (\frac {1}{e^{e^x}+2 x}+\frac {3}{6 x+\log (4)}\right ) \, dx+\int \frac {e^{e^x+x}}{e^{e^x}+2 x} \, dx\\ &=\log (6 x+\log (4))+2 \int \frac {1}{e^{e^x}+2 x} \, dx+\int \frac {e^{e^x+x}}{e^{e^x}+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.29, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {24 x+2 \log (4)+e^{e^x} \left (6+e^x (6 x+\log (4))\right )}{12 x^2+2 x \log (4)+e^{e^x} (6 x+\log (4))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 16, normalized size = 0.94 \begin {gather*} \log \left (3 \, x + \log \relax (2)\right ) + \log \left (2 \, x + e^{\left (e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 23, normalized size = 1.35 \begin {gather*} -x + \log \left (2 \, x e^{x} + e^{\left (x + e^{x}\right )}\right ) + \log \left (3 \, x + \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 17, normalized size = 1.00
method | result | size |
norman | \(\ln \left (2 x +{\mathrm e}^{{\mathrm e}^{x}}\right )+\ln \left (3 x +\ln \relax (2)\right )\) | \(17\) |
risch | \(\ln \left (2 x +{\mathrm e}^{{\mathrm e}^{x}}\right )+\ln \left (3 x +\ln \relax (2)\right )\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 16, normalized size = 0.94 \begin {gather*} \log \left (3 \, x + \log \relax (2)\right ) + \log \left (2 \, x + e^{\left (e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.73, size = 23, normalized size = 1.35 \begin {gather*} \ln \left (\frac {x\,\ln \relax (2)}{3}+\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (6\,x+2\,\ln \relax (2)\right )}{12}+x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 1.00 \begin {gather*} \log {\left (2 x + e^{e^{x}} \right )} + \log {\left (3 x + \log {\relax (2 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________