Optimal. Leaf size=26 \[ e^{\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x (1+x)}} \]
________________________________________________________________________________________
Rubi [F] time = 16.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) \left (-4-8 x+2 x^3+x^4+e^x \left (4 x+4 x^2+x^4+x^5\right )\right )}{3 x^2+6 x^3+3 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) \left (-4-8 x+2 x^3+x^4+e^x \left (4 x+4 x^2+x^4+x^5\right )\right )}{x^2 \left (3+6 x+3 x^2\right )} \, dx\\ &=\int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) \left (-4-8 x+2 x^3+x^4+e^x \left (4 x+4 x^2+x^4+x^5\right )\right )}{3 x^2 (1+x)^2} \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) \left (-4-8 x+2 x^3+x^4+e^x \left (4 x+4 x^2+x^4+x^5\right )\right )}{x^2 (1+x)^2} \, dx\\ &=\frac {1}{3} \int \left (-\frac {4 \exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x^2 (1+x)^2}-\frac {8 \exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x (1+x)^2}+\frac {2 \exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) x}{(1+x)^2}+\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) x^2}{(1+x)^2}+\frac {\exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) \left (4+x^3\right )}{x (1+x)}\right ) \, dx\\ &=\frac {1}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) x^2}{(1+x)^2} \, dx+\frac {1}{3} \int \frac {\exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) \left (4+x^3\right )}{x (1+x)} \, dx+\frac {2}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) x}{(1+x)^2} \, dx-\frac {4}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x^2 (1+x)^2} \, dx-\frac {8}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x (1+x)^2} \, dx\\ &=\frac {1}{3} \int \left (\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )+\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{(1+x)^2}-\frac {2 \exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{1+x}\right ) \, dx+\frac {1}{3} \int \left (-\exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )+\frac {4 \exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x}+\exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) x-\frac {3 \exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{1+x}\right ) \, dx+\frac {2}{3} \int \left (-\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{(1+x)^2}+\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{1+x}\right ) \, dx-\frac {4}{3} \int \left (\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x^2}-\frac {2 \exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x}+\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{(1+x)^2}+\frac {2 \exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{1+x}\right ) \, dx-\frac {8}{3} \int \left (\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{-1-x}+\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x}-\frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{(1+x)^2}\right ) \, dx\\ &=\frac {1}{3} \int \exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) \, dx-\frac {1}{3} \int \exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) \, dx+\frac {1}{3} \int \exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right ) x \, dx+\frac {1}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{(1+x)^2} \, dx-\frac {2}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{(1+x)^2} \, dx-\frac {4}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x^2} \, dx+\frac {4}{3} \int \frac {\exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{x} \, dx-\frac {4}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{(1+x)^2} \, dx-\frac {8}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{-1-x} \, dx+\frac {8}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{(1+x)^2} \, dx-\frac {8}{3} \int \frac {\exp \left (-5+e^x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{1+x} \, dx-\int \frac {\exp \left (-5+e^x+x+\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x+3 x^2}\right )}{1+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.25, size = 26, normalized size = 1.00 \begin {gather*} e^{\frac {e^{-5+e^x} \left (4+x^3\right )}{3 x (1+x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.17, size = 46, normalized size = 1.77 \begin {gather*} e^{\left (-\frac {15 \, x^{2} - 3 \, {\left (x^{2} + x\right )} e^{x} - {\left (x^{3} + 4\right )} e^{\left (e^{x} - 5\right )} + 15 \, x}{3 \, {\left (x^{2} + x\right )}} - e^{x} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{4} + 2 \, x^{3} + {\left (x^{5} + x^{4} + 4 \, x^{2} + 4 \, x\right )} e^{x} - 8 \, x - 4\right )} e^{\left (\frac {{\left (x^{3} + 4\right )} e^{\left (e^{x} - 5\right )}}{3 \, {\left (x^{2} + x\right )}} + e^{x} - 5\right )}}{3 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 22, normalized size = 0.85
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{x}-5} \left (x^{3}+4\right )}{3 \left (x +1\right ) x}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 41, normalized size = 1.58 \begin {gather*} e^{\left (\frac {1}{3} \, x e^{\left (e^{x} - 5\right )} + \frac {4 \, e^{\left (e^{x} - 5\right )}}{3 \, x} - \frac {e^{\left (e^{x}\right )}}{x e^{5} + e^{5}} - \frac {1}{3} \, e^{\left (e^{x} - 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.67, size = 41, normalized size = 1.58 \begin {gather*} {\mathrm {e}}^{\frac {x^3\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-5}}{3\,x^2+3\,x}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-5}}{3\,x^2+3\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 20, normalized size = 0.77 \begin {gather*} e^{\frac {\left (x^{3} + 4\right ) e^{e^{x} - 5}}{3 x^{2} + 3 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________