Optimal. Leaf size=27 \[ -4-\frac {1}{3} e^{\frac {1+x}{3 x}}+x+\log \left (\frac {8}{x}\right )+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 19, normalized size of antiderivative = 0.70, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {12, 14, 2209} \begin {gather*} x-\frac {1}{3} e^{\frac {1}{3 x}+\frac {1}{3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {e^{\frac {1+x}{3 x}}+9 x^2}{x^2} \, dx\\ &=\frac {1}{9} \int \left (9+\frac {e^{\frac {1}{3}+\frac {1}{3 x}}}{x^2}\right ) \, dx\\ &=x+\frac {1}{9} \int \frac {e^{\frac {1}{3}+\frac {1}{3 x}}}{x^2} \, dx\\ &=-\frac {1}{3} e^{\frac {1}{3}+\frac {1}{3 x}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.70 \begin {gather*} -\frac {1}{3} e^{\frac {1}{3}+\frac {1}{3 x}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 13, normalized size = 0.48 \begin {gather*} x - \frac {1}{3} \, e^{\left (\frac {x + 1}{3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 42, normalized size = 1.56 \begin {gather*} -\frac {\frac {{\left (x + 1\right )} e^{\left (\frac {x + 1}{3 \, x}\right )}}{x} - e^{\left (\frac {x + 1}{3 \, x}\right )} - 3}{3 \, {\left (\frac {x + 1}{x} - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 13, normalized size = 0.48
method | result | size |
derivativedivides | \(x -\frac {{\mathrm e}^{\frac {1}{3}+\frac {1}{3 x}}}{3}\) | \(13\) |
default | \(x -\frac {{\mathrm e}^{\frac {1}{3}+\frac {1}{3 x}}}{3}\) | \(13\) |
risch | \(x -\frac {{\mathrm e}^{\frac {x +1}{3 x}}}{3}\) | \(14\) |
norman | \(\frac {x^{2}-\frac {x \,{\mathrm e}^{\frac {x +1}{3 x}}}{3}}{x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 12, normalized size = 0.44 \begin {gather*} x - \frac {1}{3} \, e^{\left (\frac {1}{3 \, x} + \frac {1}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.72, size = 12, normalized size = 0.44 \begin {gather*} x-\frac {{\mathrm {e}}^{\frac {1}{3\,x}+\frac {1}{3}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.44 \begin {gather*} x - \frac {e^{\frac {\frac {x}{3} + \frac {1}{3}}{x}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________