Optimal. Leaf size=24 \[ \frac {3^{1-x (x+(1-x) \log (25))}}{\log (1+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.31, antiderivative size = 79, normalized size of antiderivative = 3.29, number of steps used = 1, number of rules used = 1, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {2288} \begin {gather*} \frac {3^{1-x^2} e^{-\left (\left (x-x^2\right ) \log (3) \log (25)\right )} \left (\left (-2 x^2-x+1\right ) \log (3) \log (25)+2 \left (x^2+x\right ) \log (3)\right )}{(x+1) ((1-2 x) \log (3) \log (25)+2 x \log (3)) \log (x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {3^{1-x^2} e^{-\left (\left (x-x^2\right ) \log (3) \log (25)\right )} \left (2 \left (x+x^2\right ) \log (3)+\left (1-x-2 x^2\right ) \log (3) \log (25)\right )}{(1+x) (2 x \log (3)+(1-2 x) \log (3) \log (25)) \log (1+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.11, size = 73, normalized size = 3.04 \begin {gather*} \frac {3^{(-1+x) (-1+x (-1+\log (25)))} \left (x^2 \log (9) (-1+\log (25))-\log (3) \log (25)+x (-\log (9)+\log (3) \log (25))\right )}{(1+x) \log (3) (2 x (-1+\log (25))-\log (25)) \log (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 30, normalized size = 1.25 \begin {gather*} \frac {3 \, e^{\left (-x^{2} \log \relax (3) + 2 \, {\left (x^{2} - x\right )} \log \relax (5) \log \relax (3)\right )}}{\log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 33, normalized size = 1.38 \begin {gather*} \frac {3 \, e^{\left (2 \, x^{2} \log \relax (5) \log \relax (3) - x^{2} \log \relax (3) - 2 \, x \log \relax (5) \log \relax (3)\right )}}{\log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 27, normalized size = 1.12
method | result | size |
risch | \(\frac {3 \,9^{x \left (x -1\right ) \ln \relax (5)} 3^{-x^{2}}}{\ln \left (x +1\right )}\) | \(27\) |
norman | \(\frac {3 \,{\mathrm e}^{\left (-x^{2}+x \right ) \ln \relax (5) \ln \left (\frac {1}{9}\right )+x^{2} \ln \left (\frac {1}{3}\right )}}{\ln \left (x +1\right )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 33, normalized size = 1.38 \begin {gather*} \frac {3 \, e^{\left (2 \, x^{2} \log \relax (5) \log \relax (3) - x^{2} \log \relax (3) - 2 \, x \log \relax (5) \log \relax (3)\right )}}{\log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.97, size = 33, normalized size = 1.38 \begin {gather*} \frac {3\,3^{2\,x^2\,\ln \relax (5)}}{3^{x^2}\,3^{2\,x\,\ln \relax (5)}\,\ln \left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 31, normalized size = 1.29 \begin {gather*} \frac {3 e^{- x^{2} \log {\relax (3 )} - \left (- 2 x^{2} + 2 x\right ) \log {\relax (3 )} \log {\relax (5 )}}}{\log {\left (x + 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________