Optimal. Leaf size=29 \[ 15 e^{-\frac {4}{3}-5 x} \left (1+e^{\frac {2}{3} \left (-1+e^{\frac {x}{\log (x)}}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{3} (-4-15 x)} \left (-75 \log ^2(x)+e^{\frac {2}{3} \left (-1+e^{\frac {x}{\log (x)}}\right )} \left (-75 \log ^2(x)+e^{\frac {x}{\log (x)}} (-10+10 \log (x))\right )\right )}{\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {4}{3}-5 x} \left (-75 \log ^2(x)+e^{\frac {2}{3} \left (-1+e^{\frac {x}{\log (x)}}\right )} \left (-75 \log ^2(x)+e^{\frac {x}{\log (x)}} (-10+10 \log (x))\right )\right )}{\log ^2(x)} \, dx\\ &=\int \left (-75 e^{-2-5 x} \left (e^{2/3}+e^{\frac {2}{3} e^{\frac {x}{\log (x)}}}\right )+\frac {10 e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x+\frac {x}{\log (x)}} (-1+\log (x))}{\log ^2(x)}\right ) \, dx\\ &=10 \int \frac {e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x+\frac {x}{\log (x)}} (-1+\log (x))}{\log ^2(x)} \, dx-75 \int e^{-2-5 x} \left (e^{2/3}+e^{\frac {2}{3} e^{\frac {x}{\log (x)}}}\right ) \, dx\\ &=10 \int \left (-\frac {e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x+\frac {x}{\log (x)}}}{\log ^2(x)}+\frac {e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x+\frac {x}{\log (x)}}}{\log (x)}\right ) \, dx-75 \int \left (e^{-\frac {4}{3}-5 x}+e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x}\right ) \, dx\\ &=-\left (10 \int \frac {e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x+\frac {x}{\log (x)}}}{\log ^2(x)} \, dx\right )+10 \int \frac {e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x+\frac {x}{\log (x)}}}{\log (x)} \, dx-75 \int e^{-\frac {4}{3}-5 x} \, dx-75 \int e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x} \, dx\\ &=15 e^{-\frac {4}{3}-5 x}-10 \int \frac {e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x+\frac {x}{\log (x)}}}{\log ^2(x)} \, dx+10 \int \frac {e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x+\frac {x}{\log (x)}}}{\log (x)} \, dx-75 \int e^{\frac {1}{3} \left (-6+2 e^{\frac {x}{\log (x)}}-15 x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.10, size = 33, normalized size = 1.14 \begin {gather*} 15 e^{-\frac {4}{3}-5 x}+15 e^{-2+\frac {2}{3} e^{\frac {x}{\log (x)}}-5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 26, normalized size = 0.90 \begin {gather*} 15 \, e^{\left (-5 \, x + \frac {2}{3} \, e^{\frac {x}{\log \relax (x)}} - 2\right )} + 15 \, e^{\left (-5 \, x - \frac {4}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 27, normalized size = 0.93
method | result | size |
risch | \(15 \,{\mathrm e}^{-5 x -\frac {4}{3}}+15 \,{\mathrm e}^{-5 x -2+\frac {2 \,{\mathrm e}^{\frac {x}{\ln \relax (x )}}}{3}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 26, normalized size = 0.90 \begin {gather*} 15 \, e^{\left (-5 \, x + \frac {2}{3} \, e^{\frac {x}{\log \relax (x)}} - 2\right )} + 15 \, e^{\left (-5 \, x - \frac {4}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.59, size = 21, normalized size = 0.72 \begin {gather*} 15\,{\mathrm {e}}^{-5\,x}\,{\mathrm {e}}^{-2}\,\left ({\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{\frac {x}{\ln \relax (x)}}}{3}}+{\mathrm {e}}^{2/3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 68.78, size = 37, normalized size = 1.28 \begin {gather*} 15 e^{- 5 x - \frac {4}{3}} e^{\frac {2 e^{\frac {x}{\log {\relax (x )}}}}{3} - \frac {2}{3}} + 15 e^{- 5 x - \frac {4}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________