Optimal. Leaf size=25 \[ 2 \left (-1+2 x^2+\frac {5}{\left (2 x-\frac {\log (x)}{2}\right )^2}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 22, normalized size of antiderivative = 0.88, number of steps used = 6, number of rules used = 4, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {6741, 6742, 14, 6686} \begin {gather*} 4 x^2+2 \log (x)+\frac {40}{(4 x-\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6686
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {80-320 x+128 x^3+512 x^5-\left (96 x^2+384 x^4\right ) \log (x)-\left (-24 x-96 x^3\right ) \log ^2(x)-\left (2+8 x^2\right ) \log ^3(x)}{x (4 x-\log (x))^3} \, dx\\ &=\int \left (\frac {2 \left (1+4 x^2\right )}{x}-\frac {80 (-1+4 x)}{x (4 x-\log (x))^3}\right ) \, dx\\ &=2 \int \frac {1+4 x^2}{x} \, dx-80 \int \frac {-1+4 x}{x (4 x-\log (x))^3} \, dx\\ &=\frac {40}{(4 x-\log (x))^2}+2 \int \left (\frac {1}{x}+4 x\right ) \, dx\\ &=4 x^2+\frac {40}{(4 x-\log (x))^2}+2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 0.80 \begin {gather*} 4 x^2+2 \log (x)+\frac {40}{(-4 x+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.35, size = 56, normalized size = 2.24 \begin {gather*} \frac {2 \, {\left (32 \, x^{4} + 2 \, {\left (x^{2} - 4 \, x\right )} \log \relax (x)^{2} + \log \relax (x)^{3} - 16 \, {\left (x^{3} - x^{2}\right )} \log \relax (x) + 20\right )}}{16 \, x^{2} - 8 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 55, normalized size = 2.20 \begin {gather*} 4 \, x^{2} + \frac {40 \, {\left (4 \, x - 1\right )}}{64 \, x^{3} - 32 \, x^{2} \log \relax (x) + 4 \, x \log \relax (x)^{2} - 16 \, x^{2} + 8 \, x \log \relax (x) - \log \relax (x)^{2}} + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.92
method | result | size |
risch | \(4 x^{2}+2 \ln \relax (x )+\frac {40}{\left (4 x -\ln \relax (x )\right )^{2}}\) | \(23\) |
norman | \(\frac {40+64 x^{4}+4 x^{2} \ln \relax (x )^{2}-32 x^{3} \ln \relax (x )}{\left (4 x -\ln \relax (x )\right )^{2}}+2 \ln \relax (x )\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 46, normalized size = 1.84 \begin {gather*} \frac {4 \, {\left (16 \, x^{4} - 8 \, x^{3} \log \relax (x) + x^{2} \log \relax (x)^{2} + 10\right )}}{16 \, x^{2} - 8 \, x \log \relax (x) + \log \relax (x)^{2}} + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.71, size = 22, normalized size = 0.88 \begin {gather*} 2\,\ln \relax (x)+4\,x^2+\frac {40}{{\left (4\,x-\ln \relax (x)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 27, normalized size = 1.08 \begin {gather*} 4 x^{2} + 2 \log {\relax (x )} + \frac {40}{16 x^{2} - 8 x \log {\relax (x )} + \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________