Optimal. Leaf size=29 \[ \frac {4}{3} \left (1-\frac {e^{(1-x) x \left (-2 x+e^x x\right )}}{x}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.48, antiderivative size = 104, normalized size of antiderivative = 3.59, number of steps used = 2, number of rules used = 2, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {12, 2288} \begin {gather*} -\frac {4 e^{2 x^3-2 x^2+e^x \left (x^2-x^3\right )} \left (-6 x^3+4 x^2-e^x \left (-x^4-2 x^3+2 x^2\right )\right )}{3 x^2 \left (-6 x^2-e^x \left (2 x-3 x^2\right )-e^x \left (x^2-x^3\right )+4 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-2 x^2+2 x^3+e^x \left (x^2-x^3\right )} \left (4+16 x^2-24 x^3+e^x \left (-8 x^2+8 x^3+4 x^4\right )\right )}{x^2} \, dx\\ &=-\frac {4 e^{-2 x^2+2 x^3+e^x \left (x^2-x^3\right )} \left (4 x^2-6 x^3-e^x \left (2 x^2-2 x^3-x^4\right )\right )}{3 x^2 \left (4 x-6 x^2-e^x \left (2 x-3 x^2\right )-e^x \left (x^2-x^3\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 22, normalized size = 0.76 \begin {gather*} -\frac {4 e^{-\left (\left (-2+e^x\right ) (-1+x) x^2\right )}}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.18, size = 30, normalized size = 1.03 \begin {gather*} -\frac {4 \, e^{\left (2 \, x^{3} - 2 \, x^{2} - {\left (x^{3} - x^{2}\right )} e^{x}\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, {\left (6 \, x^{3} - 4 \, x^{2} - {\left (x^{4} + 2 \, x^{3} - 2 \, x^{2}\right )} e^{x} - 1\right )} e^{\left (2 \, x^{3} - 2 \, x^{2} - {\left (x^{3} - x^{2}\right )} e^{x}\right )}}{3 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 0.66
method | result | size |
risch | \(-\frac {4 \,{\mathrm e}^{-x^{2} \left (x -1\right ) \left ({\mathrm e}^{x}-2\right )}}{3 x}\) | \(19\) |
norman | \(-\frac {4 \,{\mathrm e}^{\left (-x^{3}+x^{2}\right ) {\mathrm e}^{x}+2 x^{3}-2 x^{2}}}{3 x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 30, normalized size = 1.03 \begin {gather*} -\frac {4 \, e^{\left (-x^{3} e^{x} + 2 \, x^{3} + x^{2} e^{x} - 2 \, x^{2}\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.67, size = 32, normalized size = 1.10 \begin {gather*} -\frac {4\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-x^3\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-2\,x^2}\,{\mathrm {e}}^{2\,x^3}}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 27, normalized size = 0.93 \begin {gather*} - \frac {4 e^{2 x^{3} - 2 x^{2} + \left (- x^{3} + x^{2}\right ) e^{x}}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________