Optimal. Leaf size=20 \[ 9+\log \left (x \left (3-x^2\right )^2 (-1+x \log (x))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3-3 x-5 x^2+x^3+\left (-6 x+6 x^3\right ) \log (x)}{3 x-x^3+\left (-3 x^2+x^4\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(1+x) \left (3-6 x+x^2-6 x \log (x)+6 x^2 \log (x)\right )}{x \left (3-x^2\right ) (1-x \log (x))} \, dx\\ &=\int \left (\frac {6 \left (-1+x^2\right )}{x \left (-3+x^2\right )}+\frac {1+x}{x (-1+x \log (x))}\right ) \, dx\\ &=6 \int \frac {-1+x^2}{x \left (-3+x^2\right )} \, dx+\int \frac {1+x}{x (-1+x \log (x))} \, dx\\ &=3 \operatorname {Subst}\left (\int \frac {-1+x}{(-3+x) x} \, dx,x,x^2\right )+\int \left (\frac {1}{-1+x \log (x)}+\frac {1}{x (-1+x \log (x))}\right ) \, dx\\ &=3 \operatorname {Subst}\left (\int \left (\frac {2}{3 (-3+x)}+\frac {1}{3 x}\right ) \, dx,x,x^2\right )+\int \frac {1}{-1+x \log (x)} \, dx+\int \frac {1}{x (-1+x \log (x))} \, dx\\ &=2 \log (x)+2 \log \left (3-x^2\right )+\int \frac {1}{-1+x \log (x)} \, dx+\int \frac {1}{x (-1+x \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 21, normalized size = 1.05 \begin {gather*} \log (x)+2 \log \left (3-x^2\right )+\log (1-x \log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 22, normalized size = 1.10 \begin {gather*} 2 \, \log \left (x^{3} - 3 \, x\right ) + \log \left (\frac {x \log \relax (x) - 1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 19, normalized size = 0.95 \begin {gather*} 2 \, \log \left (x^{2} - 3\right ) + \log \left (-x \log \relax (x) + 1\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.95
method | result | size |
norman | \(\ln \relax (x )+2 \ln \left (x^{2}-3\right )+\ln \left (x \ln \relax (x )-1\right )\) | \(19\) |
risch | \(2 \ln \left (x^{3}-3 x \right )+\ln \left (\ln \relax (x )-\frac {1}{x}\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 24, normalized size = 1.20 \begin {gather*} 2 \, \log \left (x^{2} - 3\right ) + 2 \, \log \relax (x) + \log \left (\frac {x \log \relax (x) - 1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.65, size = 22, normalized size = 1.10 \begin {gather*} 2\,\ln \left (x^3-3\,x\right )+\ln \left (\frac {x\,\ln \relax (x)-1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 17, normalized size = 0.85 \begin {gather*} 2 \log {\left (x^{3} - 3 x \right )} + \log {\left (\log {\relax (x )} - \frac {1}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________