Optimal. Leaf size=33 \[ 1-e^{e^{\frac {x}{-x+\frac {1}{x-\left (\frac {-4+x}{e^2}+x\right )^2}}}} \]
________________________________________________________________________________________
Rubi [F] time = 138.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right ) \left (8 x-14 x^2+3 x^3+\frac {(-4+x)^2 (-4+3 x)}{e^4}+\frac {(-4+x) \left (-16 x+6 x^2\right )}{e^2}\right )}{-4+x+8 x^2-10 x^3-2 x^4+9 x^5-6 x^6+x^7+\frac {(-4+x)^4 \left (-4 x^2+x^3\right )}{e^8}+\frac {(-4+x)^3 \left (-16 x^3+4 x^4\right )}{e^6}+\frac {(-4+x)^2 \left (-8 x+2 x^2+8 x^3-26 x^4+6 x^5\right )}{e^4}+\frac {(-4+x) \left (-16 x^2+4 x^3+16 x^4-20 x^5+4 x^6\right )}{e^2}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right ) \left (16 e^4+\left (-16 e^4-16 e^6-2 e^8\right ) x+\left (3 e^4+6 e^6+3 e^8\right ) x^2\right )}{e^8+32 e^4 x+\left (256-16 e^4-16 e^6-2 e^8\right ) x^2+\left (-256-256 e^2-30 e^4+4 e^6+2 e^8\right ) x^3+\left (96+192 e^2+112 e^4+16 e^6+e^8\right ) x^4+\left (-16-48 e^2-50 e^4-20 e^6-2 e^8\right ) x^5+\left (1+4 e^2+6 e^4+4 e^6+e^8\right ) x^6} \, dx\\ &=\int \frac {\exp \left (\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right ) \left (16 e^4-2 e^4 \left (8+8 e^2+e^4\right ) x+3 e^4 \left (1+e^2\right )^2 x^2\right )}{\left (e^4+16 x-\left (8+8 e^2+e^4\right ) x^2+\left (1+e^2\right )^2 x^3\right )^2} \, dx\\ &=\int \left (\frac {16 \exp \left (4+\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )}{\left (e^4+16 x-\left (8+8 e^2+e^4\right ) x^2+\left (1+e^2\right )^2 x^3\right )^2}+\frac {2 \exp \left (4+\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right ) \left (-8-8 e^2-e^4\right ) x}{\left (e^4+16 x-\left (8+8 e^2+e^4\right ) x^2+\left (1+e^2\right )^2 x^3\right )^2}+\frac {3 \exp \left (4+\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right ) \left (1+e^2\right )^2 x^2}{\left (e^4+16 x-\left (8+8 e^2+e^4\right ) x^2+\left (1+e^2\right )^2 x^3\right )^2}\right ) \, dx\\ &=16 \int \frac {\exp \left (4+\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )}{\left (e^4+16 x-\left (8+8 e^2+e^4\right ) x^2+\left (1+e^2\right )^2 x^3\right )^2} \, dx+\left (3 \left (1+e^2\right )^2\right ) \int \frac {\exp \left (4+\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right ) x^2}{\left (e^4+16 x-\left (8+8 e^2+e^4\right ) x^2+\left (1+e^2\right )^2 x^3\right )^2} \, dx-\left (2 \left (8+8 e^2+e^4\right )\right ) \int \frac {\exp \left (4+\exp \left (\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right )+\frac {-\frac {(-4+x)^2 x}{e^4}+x^2-\frac {2 (-4+x) x^2}{e^2}-x^3}{1+\frac {(-4+x)^2 x}{e^4}-x^2+\frac {2 (-4+x) x^2}{e^2}+x^3}\right ) x}{\left (e^4+16 x-\left (8+8 e^2+e^4\right ) x^2+\left (1+e^2\right )^2 x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 47, normalized size = 1.42 \begin {gather*} -e^{e^{-1+\frac {e^4}{(-4+x)^2 x+2 e^2 (-4+x) x^2+e^4 \left (1-x^2+x^3\right )}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 281, normalized size = 8.52 \begin {gather*} -e^{\left (-\frac {x^{3} - 8 \, x^{2} + {\left (x^{3} - x^{2}\right )} e^{4} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{2} - {\left (x^{3} - 8 \, x^{2} + {\left (x^{3} - x^{2} + 1\right )} e^{4} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{2} + 16 \, x\right )} e^{\left (-\frac {x^{3} - 8 \, x^{2} + {\left (x^{3} - x^{2}\right )} e^{4} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{2} + 16 \, x}{x^{3} - 8 \, x^{2} + {\left (x^{3} - x^{2} + 1\right )} e^{4} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{2} + 16 \, x}\right )} + 16 \, x}{x^{3} - 8 \, x^{2} + {\left (x^{3} - x^{2} + 1\right )} e^{4} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{2} + 16 \, x} + \frac {x^{3} - 8 \, x^{2} + {\left (x^{3} - x^{2}\right )} e^{4} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{2} + 16 \, x}{x^{3} - 8 \, x^{2} + {\left (x^{3} - x^{2} + 1\right )} e^{4} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} e^{2} + 16 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 10.24, size = 86, normalized size = 2.61
method | result | size |
risch | \(-{\mathrm e}^{{\mathrm e}^{-\frac {x \left ({\mathrm e}^{-4} x^{2}+2 x^{2} {\mathrm e}^{-2}-8 x \,{\mathrm e}^{-4}-8 \,{\mathrm e}^{-2} x +x^{2}+16 \,{\mathrm e}^{-4}-x \right )}{{\mathrm e}^{-4} x^{3}+2 x^{3} {\mathrm e}^{-2}-8 \,{\mathrm e}^{-4} x^{2}-8 x^{2} {\mathrm e}^{-2}+x^{3}+16 x \,{\mathrm e}^{-4}-x^{2}+1}}}\) | \(86\) |
norman | \(\frac {\left (\left ({\mathrm e}^{4}+8 \,{\mathrm e}^{2}+8\right ) {\mathrm e}^{4} {\mathrm e}^{-2} x^{2} {\mathrm e}^{{\mathrm e}^{\frac {-x \left (x -4\right )^{2} {\mathrm e}^{-4}-2 x^{2} \left (x -4\right ) {\mathrm e}^{-2}-x^{3}+x^{2}}{x \left (x -4\right )^{2} {\mathrm e}^{-4}+2 x^{2} \left (x -4\right ) {\mathrm e}^{-2}+x^{3}-x^{2}+1}}}-{\mathrm e}^{2} {\mathrm e}^{4} {\mathrm e}^{{\mathrm e}^{\frac {-x \left (x -4\right )^{2} {\mathrm e}^{-4}-2 x^{2} \left (x -4\right ) {\mathrm e}^{-2}-x^{3}+x^{2}}{x \left (x -4\right )^{2} {\mathrm e}^{-4}+2 x^{2} \left (x -4\right ) {\mathrm e}^{-2}+x^{3}-x^{2}+1}}}-16 \,{\mathrm e}^{-2} {\mathrm e}^{4} x \,{\mathrm e}^{{\mathrm e}^{\frac {-x \left (x -4\right )^{2} {\mathrm e}^{-4}-2 x^{2} \left (x -4\right ) {\mathrm e}^{-2}-x^{3}+x^{2}}{x \left (x -4\right )^{2} {\mathrm e}^{-4}+2 x^{2} \left (x -4\right ) {\mathrm e}^{-2}+x^{3}-x^{2}+1}}}-{\mathrm e}^{-2} \left (1+{\mathrm e}^{4}+2 \,{\mathrm e}^{2}\right ) {\mathrm e}^{4} x^{3} {\mathrm e}^{{\mathrm e}^{\frac {-x \left (x -4\right )^{2} {\mathrm e}^{-4}-2 x^{2} \left (x -4\right ) {\mathrm e}^{-2}-x^{3}+x^{2}}{x \left (x -4\right )^{2} {\mathrm e}^{-4}+2 x^{2} \left (x -4\right ) {\mathrm e}^{-2}+x^{3}-x^{2}+1}}}\right ) {\mathrm e}^{-2}}{x^{3} {\mathrm e}^{4}-x^{2} {\mathrm e}^{4}+2 x^{3} {\mathrm e}^{2}-8 x^{2} {\mathrm e}^{2}+x^{3}+{\mathrm e}^{4}-8 x^{2}+16 x}\) | \(388\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 6.83, size = 947, normalized size = 28.70 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.87, size = 361, normalized size = 10.94 \begin {gather*} -{\mathrm {e}}^{{\mathrm {e}}^{\frac {x^2}{16\,x\,{\mathrm {e}}^{-4}-8\,x^2\,{\mathrm {e}}^{-2}+2\,x^3\,{\mathrm {e}}^{-2}-8\,x^2\,{\mathrm {e}}^{-4}+x^3\,{\mathrm {e}}^{-4}-x^2+x^3+1}}\,{\mathrm {e}}^{-\frac {x^3}{16\,x\,{\mathrm {e}}^{-4}-8\,x^2\,{\mathrm {e}}^{-2}+2\,x^3\,{\mathrm {e}}^{-2}-8\,x^2\,{\mathrm {e}}^{-4}+x^3\,{\mathrm {e}}^{-4}-x^2+x^3+1}}\,{\mathrm {e}}^{-\frac {16\,x\,{\mathrm {e}}^{-4}}{16\,x\,{\mathrm {e}}^{-4}-8\,x^2\,{\mathrm {e}}^{-2}+2\,x^3\,{\mathrm {e}}^{-2}-8\,x^2\,{\mathrm {e}}^{-4}+x^3\,{\mathrm {e}}^{-4}-x^2+x^3+1}}\,{\mathrm {e}}^{-\frac {2\,x^3\,{\mathrm {e}}^{-2}}{16\,x\,{\mathrm {e}}^{-4}-8\,x^2\,{\mathrm {e}}^{-2}+2\,x^3\,{\mathrm {e}}^{-2}-8\,x^2\,{\mathrm {e}}^{-4}+x^3\,{\mathrm {e}}^{-4}-x^2+x^3+1}}\,{\mathrm {e}}^{-\frac {x^3\,{\mathrm {e}}^{-4}}{16\,x\,{\mathrm {e}}^{-4}-8\,x^2\,{\mathrm {e}}^{-2}+2\,x^3\,{\mathrm {e}}^{-2}-8\,x^2\,{\mathrm {e}}^{-4}+x^3\,{\mathrm {e}}^{-4}-x^2+x^3+1}}\,{\mathrm {e}}^{\frac {8\,x^2\,{\mathrm {e}}^{-2}}{16\,x\,{\mathrm {e}}^{-4}-8\,x^2\,{\mathrm {e}}^{-2}+2\,x^3\,{\mathrm {e}}^{-2}-8\,x^2\,{\mathrm {e}}^{-4}+x^3\,{\mathrm {e}}^{-4}-x^2+x^3+1}}\,{\mathrm {e}}^{\frac {8\,x^2\,{\mathrm {e}}^{-4}}{16\,x\,{\mathrm {e}}^{-4}-8\,x^2\,{\mathrm {e}}^{-2}+2\,x^3\,{\mathrm {e}}^{-2}-8\,x^2\,{\mathrm {e}}^{-4}+x^3\,{\mathrm {e}}^{-4}-x^2+x^3+1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 8.22, size = 63, normalized size = 1.91 \begin {gather*} - e^{e^{\frac {- x^{3} - \frac {2 x^{2} \left (x - 4\right )}{e^{2}} + x^{2} - \frac {x \left (x - 4\right )^{2}}{e^{4}}}{x^{3} + \frac {2 x^{2} \left (x - 4\right )}{e^{2}} - x^{2} + \frac {x \left (x - 4\right )^{2}}{e^{4}} + 1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________