Optimal. Leaf size=18 \[ 4+e^x+e^{x+\frac {2 x^2}{\log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 0.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \log ^2(x)+e^{\frac {2 x^2+x \log (x)}{\log (x)}} \left (-2 x+4 x \log (x)+\log ^2(x)\right )}{\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x+\frac {e^{\frac {x (2 x+\log (x))}{\log (x)}} \left (-2 x+4 x \log (x)+\log ^2(x)\right )}{\log ^2(x)}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {e^{\frac {x (2 x+\log (x))}{\log (x)}} \left (-2 x+4 x \log (x)+\log ^2(x)\right )}{\log ^2(x)} \, dx\\ &=e^x+\int \left (e^{\frac {x (2 x+\log (x))}{\log (x)}}-\frac {2 e^{\frac {x (2 x+\log (x))}{\log (x)}} x}{\log ^2(x)}+\frac {4 e^{\frac {x (2 x+\log (x))}{\log (x)}} x}{\log (x)}\right ) \, dx\\ &=e^x-2 \int \frac {e^{\frac {x (2 x+\log (x))}{\log (x)}} x}{\log ^2(x)} \, dx+4 \int \frac {e^{\frac {x (2 x+\log (x))}{\log (x)}} x}{\log (x)} \, dx+\int e^{\frac {x (2 x+\log (x))}{\log (x)}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 17, normalized size = 0.94 \begin {gather*} e^x+e^{x+\frac {2 x^2}{\log (x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 19, normalized size = 1.06 \begin {gather*} e^{x} + e^{\left (\frac {2 \, x^{2} + x \log \relax (x)}{\log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 19, normalized size = 1.06 \begin {gather*} e^{x} + e^{\left (\frac {2 \, x^{2} + x \log \relax (x)}{\log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 17, normalized size = 0.94
method | result | size |
risch | \({\mathrm e}^{\frac {x \left (2 x +\ln \relax (x )\right )}{\ln \relax (x )}}+{\mathrm e}^{x}\) | \(17\) |
default | \({\mathrm e}^{\frac {x \ln \relax (x )+2 x^{2}}{\ln \relax (x )}}+{\mathrm e}^{x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 15, normalized size = 0.83 \begin {gather*} e^{\left (x + \frac {2 \, x^{2}}{\log \relax (x)}\right )} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.71, size = 15, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^x\,\left ({\mathrm {e}}^{\frac {2\,x^2}{\ln \relax (x)}}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 17, normalized size = 0.94 \begin {gather*} e^{x} + e^{\frac {2 x^{2} + x \log {\relax (x )}}{\log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________