Optimal. Leaf size=30 \[ 4 \left (e^x+x^2 \left (1+e^{4+x (3+x)}+2 x-e^x x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 53, normalized size of antiderivative = 1.77, number of steps used = 13, number of rules used = 5, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2196, 2194, 2176, 1594, 2288} \begin {gather*} -4 e^x x^3+8 x^3+4 x^2+\frac {4 e^{x^2+3 x+4} \left (2 x^2+3 x\right ) x}{2 x+3}+4 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1594
Rule 2176
Rule 2194
Rule 2196
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 x^2+8 x^3+\int e^x \left (4-12 x^2-4 x^3\right ) \, dx+\int e^{4+3 x+x^2} \left (8 x+12 x^2+8 x^3\right ) \, dx\\ &=4 x^2+8 x^3+\int e^{4+3 x+x^2} x \left (8+12 x+8 x^2\right ) \, dx+\int \left (4 e^x-12 e^x x^2-4 e^x x^3\right ) \, dx\\ &=4 x^2+8 x^3+\frac {4 e^{4+3 x+x^2} x \left (3 x+2 x^2\right )}{3+2 x}+4 \int e^x \, dx-4 \int e^x x^3 \, dx-12 \int e^x x^2 \, dx\\ &=4 e^x+4 x^2-12 e^x x^2+8 x^3-4 e^x x^3+\frac {4 e^{4+3 x+x^2} x \left (3 x+2 x^2\right )}{3+2 x}+12 \int e^x x^2 \, dx+24 \int e^x x \, dx\\ &=4 e^x+24 e^x x+4 x^2+8 x^3-4 e^x x^3+\frac {4 e^{4+3 x+x^2} x \left (3 x+2 x^2\right )}{3+2 x}-24 \int e^x \, dx-24 \int e^x x \, dx\\ &=-20 e^x+4 x^2+8 x^3-4 e^x x^3+\frac {4 e^{4+3 x+x^2} x \left (3 x+2 x^2\right )}{3+2 x}+24 \int e^x \, dx\\ &=4 e^x+4 x^2+8 x^3-4 e^x x^3+\frac {4 e^{4+3 x+x^2} x \left (3 x+2 x^2\right )}{3+2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 50, normalized size = 1.67 \begin {gather*} 4 x^2+8 x^3+\frac {4 e^{4+3 x+x^2} x \left (3 x+2 x^2\right )}{3+2 x}-4 e^x \left (-1+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 34, normalized size = 1.13 \begin {gather*} 8 \, x^{3} + 4 \, x^{2} e^{\left (x^{2} + 3 \, x + 4\right )} + 4 \, x^{2} - 4 \, {\left (x^{3} - 1\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 42, normalized size = 1.40 \begin {gather*} 8 \, x^{3} + 4 \, x^{2} + {\left ({\left (2 \, x + 3\right )}^{2} - 12 \, x - 9\right )} e^{\left (x^{2} + 3 \, x + 4\right )} - 4 \, {\left (x^{3} - 1\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 37, normalized size = 1.23
method | result | size |
default | \(-4 \,{\mathrm e}^{x} x^{3}+4 \,{\mathrm e}^{x}+4 \,{\mathrm e}^{x^{2}+3 x +4} x^{2}+4 x^{2}+8 x^{3}\) | \(37\) |
norman | \(-4 \,{\mathrm e}^{x} x^{3}+4 \,{\mathrm e}^{x}+4 \,{\mathrm e}^{x^{2}+3 x +4} x^{2}+4 x^{2}+8 x^{3}\) | \(37\) |
risch | \(-4 \,{\mathrm e}^{x} x^{3}+4 \,{\mathrm e}^{x}+4 \,{\mathrm e}^{x^{2}+3 x +4} x^{2}+4 x^{2}+8 x^{3}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 34, normalized size = 1.13 \begin {gather*} 8 \, x^{3} + 4 \, x^{2} e^{\left (x^{2} + 3 \, x + 4\right )} + 4 \, x^{2} - 4 \, {\left (x^{3} - 1\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 36, normalized size = 1.20 \begin {gather*} 4\,{\mathrm {e}}^x-4\,x^3\,{\mathrm {e}}^x+4\,x^2\,{\mathrm {e}}^{x^2+3\,x+4}+4\,x^2+8\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 34, normalized size = 1.13 \begin {gather*} 8 x^{3} + 4 x^{2} e^{x^{2} + 3 x + 4} + 4 x^{2} + \left (4 - 4 x^{3}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________