Optimal. Leaf size=26 \[ 7+\frac {-5+x}{x}-\frac {x}{e^3}+x^2-\log \left (e^{2 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 17, normalized size of antiderivative = 0.65, number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6, 14} \begin {gather*} x^2-\left (2+\frac {1}{e^3}\right ) x-\frac {5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5+\left (-2-\frac {1}{e^3}\right ) x^2+2 x^3}{x^2} \, dx\\ &=\int \left (\frac {-1-2 e^3}{e^3}+\frac {5}{x^2}+2 x\right ) \, dx\\ &=-\frac {5}{x}-\left (2+\frac {1}{e^3}\right ) x+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 18, normalized size = 0.69 \begin {gather*} -\frac {5}{x}-2 x-\frac {x}{e^3}+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 25, normalized size = 0.96 \begin {gather*} -\frac {{\left (x^{2} - {\left (x^{3} - 2 \, x^{2} - 5\right )} e^{3}\right )} e^{\left (-3\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 26, normalized size = 1.00 \begin {gather*} {\left (x^{2} e^{6} - 2 \, x e^{6} - x e^{3}\right )} e^{\left (-6\right )} - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.69
method | result | size |
risch | \(-{\mathrm e}^{-3} x +x^{2}-2 x -\frac {5}{x}\) | \(18\) |
default | \(x^{2}-2 x -\frac {5}{x}-{\mathrm e}^{\ln \relax (x )-3}\) | \(20\) |
norman | \(\frac {-5+x^{3}-{\mathrm e}^{-3} \left (2 \,{\mathrm e}^{3}+1\right ) x^{2}}{x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 0.96 \begin {gather*} {\left (x^{2} e^{3} - x {\left (2 \, e^{3} + 1\right )}\right )} e^{\left (-3\right )} - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 20, normalized size = 0.77 \begin {gather*} -\frac {-x^3+\left ({\mathrm {e}}^{-3}+2\right )\,x^2+5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^{2} e^{3} + x \left (- 2 e^{3} - 1\right ) - \frac {5 e^{3}}{x}}{e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________