Optimal. Leaf size=31 \[ x \left (3+\left (2+5 e^{\frac {4 \left (x^2+\frac {x}{\log (x)}\right )}{x^2}}\right )^2 x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.44, antiderivative size = 95, normalized size of antiderivative = 3.06, number of steps used = 5, number of rules used = 2, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6742, 2288} \begin {gather*} 4 x^3+\frac {20 x e^{\frac {4}{x \log (x)}+4} (\log (x)+1)}{\left (\frac {1}{x^2 \log ^2(x)}+\frac {1}{x^2 \log (x)}\right ) \log ^2(x)}+\frac {25 x e^{\frac {8}{x \log (x)}+8} (\log (x)+1)}{\left (\frac {1}{x^2 \log ^2(x)}+\frac {1}{x^2 \log (x)}\right ) \log ^2(x)}+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3 \left (1+4 x^2\right )+\frac {25 e^{8+\frac {8}{x \log (x)}} x \left (-8-8 \log (x)+3 x \log ^2(x)\right )}{\log ^2(x)}+\frac {20 e^{4+\frac {4}{x \log (x)}} x \left (-4-4 \log (x)+3 x \log ^2(x)\right )}{\log ^2(x)}\right ) \, dx\\ &=3 \int \left (1+4 x^2\right ) \, dx+20 \int \frac {e^{4+\frac {4}{x \log (x)}} x \left (-4-4 \log (x)+3 x \log ^2(x)\right )}{\log ^2(x)} \, dx+25 \int \frac {e^{8+\frac {8}{x \log (x)}} x \left (-8-8 \log (x)+3 x \log ^2(x)\right )}{\log ^2(x)} \, dx\\ &=3 x+4 x^3+\frac {20 e^{4+\frac {4}{x \log (x)}} x (1+\log (x))}{\left (\frac {1}{x^2 \log ^2(x)}+\frac {1}{x^2 \log (x)}\right ) \log ^2(x)}+\frac {25 e^{8+\frac {8}{x \log (x)}} x (1+\log (x))}{\left (\frac {1}{x^2 \log ^2(x)}+\frac {1}{x^2 \log (x)}\right ) \log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 27, normalized size = 0.87 \begin {gather*} x \left (3+\left (2+5 e^{4+\frac {4}{x \log (x)}}\right )^2 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 51, normalized size = 1.65 \begin {gather*} 25 \, x^{3} e^{\left (\frac {8 \, {\left (x \log \relax (x) + 1\right )}}{x \log \relax (x)}\right )} + 20 \, x^{3} e^{\left (\frac {4 \, {\left (x \log \relax (x) + 1\right )}}{x \log \relax (x)}\right )} + 4 \, x^{3} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 51, normalized size = 1.65 \begin {gather*} 25 \, x^{3} e^{\left (\frac {8 \, {\left (x \log \relax (x) + 1\right )}}{x \log \relax (x)}\right )} + 20 \, x^{3} e^{\left (\frac {4 \, {\left (x \log \relax (x) + 1\right )}}{x \log \relax (x)}\right )} + 4 \, x^{3} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 52, normalized size = 1.68
method | result | size |
default | \(3 x +20 x^{3} {\mathrm e}^{\frac {4 x \ln \relax (x )+4}{x \ln \relax (x )}}+25 x^{3} {\mathrm e}^{\frac {8 x \ln \relax (x )+8}{x \ln \relax (x )}}+4 x^{3}\) | \(52\) |
risch | \(3 x +20 x^{3} {\mathrm e}^{\frac {4 x \ln \relax (x )+4}{x \ln \relax (x )}}+25 x^{3} {\mathrm e}^{\frac {8 x \ln \relax (x )+8}{x \ln \relax (x )}}+4 x^{3}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.73, size = 43, normalized size = 1.39 \begin {gather*} 3\,x+20\,x^3\,{\mathrm {e}}^{\frac {4}{x\,\ln \relax (x)}+4}+25\,x^3\,{\mathrm {e}}^{\frac {8}{x\,\ln \relax (x)}+8}+4\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.10, size = 48, normalized size = 1.55 \begin {gather*} 25 x^{3} e^{\frac {2 \left (4 x \log {\relax (x )} + 4\right )}{x \log {\relax (x )}}} + 20 x^{3} e^{\frac {4 x \log {\relax (x )} + 4}{x \log {\relax (x )}}} + 4 x^{3} + 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________