Optimal. Leaf size=21 \[ e^{\frac {5 e^x x}{6 \left (\frac {e}{x}-x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 2.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x+\frac {5 e^x x^2}{6 e-6 x^2}} \left (-5 x^4+e \left (10 x+5 x^2\right )\right )}{6 e^2-12 e x^2+6 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=6 \int \frac {e^{x+\frac {5 e^x x^2}{6 e-6 x^2}} \left (-5 x^4+e \left (10 x+5 x^2\right )\right )}{\left (-6 e+6 x^2\right )^2} \, dx\\ &=6 \int \frac {e^{x+\frac {5 e^x x^2}{6 e-6 x^2}} x \left (10 e+5 e x-5 x^3\right )}{\left (6 e-6 x^2\right )^2} \, dx\\ &=6 \int \left (-\frac {5}{36} e^{x+\frac {5 e^x x^2}{6 e-6 x^2}}+\frac {5 e^{1+x+\frac {5 e^x x^2}{6 e-6 x^2}} x}{18 \left (e-x^2\right )^2}+\frac {5 e^{1+x+\frac {5 e^x x^2}{6 e-6 x^2}}}{36 \left (e-x^2\right )}\right ) \, dx\\ &=-\left (\frac {5}{6} \int e^{x+\frac {5 e^x x^2}{6 e-6 x^2}} \, dx\right )+\frac {5}{6} \int \frac {e^{1+x+\frac {5 e^x x^2}{6 e-6 x^2}}}{e-x^2} \, dx+\frac {5}{3} \int \frac {e^{1+x+\frac {5 e^x x^2}{6 e-6 x^2}} x}{\left (e-x^2\right )^2} \, dx\\ &=-\left (\frac {5}{6} \int e^{x+\frac {5 e^x x^2}{6 e-6 x^2}} \, dx\right )+\frac {5}{6} \int \left (\frac {e^{\frac {1}{2}+x+\frac {5 e^x x^2}{6 e-6 x^2}}}{2 \left (\sqrt {e}-x\right )}+\frac {e^{\frac {1}{2}+x+\frac {5 e^x x^2}{6 e-6 x^2}}}{2 \left (\sqrt {e}+x\right )}\right ) \, dx+\frac {5}{3} \int \frac {e^{1+x+\frac {5 e^x x^2}{6 e-6 x^2}} x}{\left (e-x^2\right )^2} \, dx\\ &=\frac {5}{12} \int \frac {e^{\frac {1}{2}+x+\frac {5 e^x x^2}{6 e-6 x^2}}}{\sqrt {e}-x} \, dx+\frac {5}{12} \int \frac {e^{\frac {1}{2}+x+\frac {5 e^x x^2}{6 e-6 x^2}}}{\sqrt {e}+x} \, dx-\frac {5}{6} \int e^{x+\frac {5 e^x x^2}{6 e-6 x^2}} \, dx+\frac {5}{3} \int \frac {e^{1+x+\frac {5 e^x x^2}{6 e-6 x^2}} x}{\left (e-x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 21, normalized size = 1.00 \begin {gather*} e^{-\frac {5 e^x x^2}{6 \left (-e+x^2\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.21, size = 35, normalized size = 1.67 \begin {gather*} e^{\left (-x + \frac {6 \, x^{3} - 5 \, x^{2} e^{x} - 6 \, x e}{6 \, {\left (x^{2} - e\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, {\left (x^{4} - {\left (x^{2} + 2 \, x\right )} e\right )} e^{\left (-\frac {5 \, x^{2} e^{x}}{6 \, {\left (x^{2} - e\right )}} + x\right )}}{6 \, {\left (x^{4} - 2 \, x^{2} e + e^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 19, normalized size = 0.90
method | result | size |
risch | \({\mathrm e}^{\frac {5 \,{\mathrm e}^{x} x^{2}}{6 \left ({\mathrm e}-x^{2}\right )}}\) | \(19\) |
norman | \(\frac {{\mathrm e} \,{\mathrm e}^{\frac {5 x^{2} {\mathrm e}^{x}}{6 \,{\mathrm e}-6 x^{2}}}-x^{2} {\mathrm e}^{\frac {5 x^{2} {\mathrm e}^{x}}{6 \,{\mathrm e}-6 x^{2}}}}{{\mathrm e}-x^{2}}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 22, normalized size = 1.05 \begin {gather*} e^{\left (-\frac {5 \, e^{\left (x + 1\right )}}{6 \, {\left (x^{2} - e\right )}} - \frac {5}{6} \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.06, size = 20, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{\frac {5\,x^2\,{\mathrm {e}}^x}{6\,\mathrm {e}-6\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 19, normalized size = 0.90 \begin {gather*} e^{\frac {5 x^{2} e^{x}}{- 6 x^{2} + 6 e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________