Optimal. Leaf size=20 \[ 2 e^2 x \left (2 e^{255} \left (-1+e^{e^2}\right )+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 24, normalized size of antiderivative = 1.20, number of steps used = 1, number of rules used = 1, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {9} \begin {gather*} 2 e^2 \left (e^{255} \left (1-e^{e^2}\right )-x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 e^2 \left (e^{255} \left (1-e^{e^2}\right )-x\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 28, normalized size = 1.40 \begin {gather*} 4 e^2 \left (-e^{255} x+e^{255+e^2} x+\frac {x^2}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 24, normalized size = 1.20 \begin {gather*} 2 \, {\left (x^{2} e^{3} - 2 \, x e^{258} + 2 \, x e^{\left (e^{2} + 258\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 24, normalized size = 1.20 \begin {gather*} 2 \, {\left (x^{2} e^{3} - 2 \, x e^{258} + 2 \, x e^{\left (e^{2} + 258\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.25
method | result | size |
norman | \(2 x^{2} {\mathrm e}^{2}+4 \,{\mathrm e}^{2} {\mathrm e}^{256} \left ({\mathrm e}^{{\mathrm e}^{2}}-1\right ) {\mathrm e}^{-1} x\) | \(25\) |
gosper | \(2 \,{\mathrm e}^{2} x \left (x \,{\mathrm e}+2 \,{\mathrm e}^{256} {\mathrm e}^{{\mathrm e}^{2}}-2 \,{\mathrm e}^{256}\right ) {\mathrm e}^{-1}\) | \(26\) |
risch | \(4 \,{\mathrm e}^{2} x \,{\mathrm e}^{{\mathrm e}^{2}+255}-4 \,{\mathrm e}^{2} {\mathrm e}^{255} x +2 x^{2} {\mathrm e}^{2}\) | \(26\) |
default | \({\mathrm e}^{-1} \left (4 \,{\mathrm e}^{2} {\mathrm e}^{256} {\mathrm e}^{{\mathrm e}^{2}} x -4 \,{\mathrm e}^{2} {\mathrm e}^{256} x +2 x^{2} {\mathrm e} \,{\mathrm e}^{2}\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 24, normalized size = 1.20 \begin {gather*} 2 \, {\left (x^{2} e^{3} - 2 \, x e^{258} + 2 \, x e^{\left (e^{2} + 258\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 23, normalized size = 1.15 \begin {gather*} \frac {{\mathrm {e}}^{-4}\,{\left (4\,{\mathrm {e}}^{{\mathrm {e}}^2+258}-4\,{\mathrm {e}}^{258}+4\,x\,{\mathrm {e}}^3\right )}^2}{8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 24, normalized size = 1.20 \begin {gather*} 2 x^{2} e^{2} + x \left (- 4 e^{257} + 4 e^{257} e^{e^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________